Weijian Wang | Sustainable Materials | Best Researcher Award | 13556

Assoc Prof Dr. Weijian Wang | Sustainable Materials | Best Researcher Award

Assoc Prof Dr. Weijian Wang, Beibu Gulf University, China

Assoc. Prof. Dr. Weijian Wang, currently serving at Beibu Gulf University, is a promising researcher in the field of halide perovskite materials. With a strong academic foundation and postdoctoral training from Zhejiang University, his work emphasizes green synthesis and innovative applications of perovskites in solar cells, LEDs, and biomedical fields. He has published 11 SCI-indexed papers, authored 15 authorized patents, and led a major Guangxi research project, showcasing both academic rigor and practical innovation. His contributions, particularly through simulation-aided design and material fabrication, demonstrate significant potential for advancing sustainable energy technologies and high-performance optoelectronic devices.

Author Profile

Orcid | Scopus
Education

Dr. Weijian Wang embarked on his academic journey with a solid foundation in chemical sciences. He earned his Bachelor’s degree in Chemical Engineering and Technology from the China University of Petroleum (East China)—an institution known for producing talent in energy and chemical sectors. His academic excellence and growing passion for applied chemical research led him to pursue a Master’s degree in Chemical Engineering at the China University of Mining and Technology, where he deepened his understanding of reaction engineering, process modeling, and advanced materials.

Eager to contribute to cutting-edge innovation in the energy sector, Dr. Wang pursued his Ph.D. in Chemical Technology at the Research Institute of Petroleum Processing (RIPP), Sinopec, one of China’s leading industrial research institutions. His doctoral training provided him with hands-on experience in industrial-scale research, advanced materials development, and interdisciplinary collaboration. To further strengthen his academic and research profile, Dr. Wang completed a postdoctoral fellowship at Zhejiang University, where he explored emerging materials and device applications, preparing him for a career at the intersection of academia and applied science.

Experience

In 2022, Dr. Wang joined Beibu Gulf University as an Associate Professor, where he has since led a promising research group focusing on halide perovskite materials. As a faculty member, he has embraced both teaching and research, mentoring students while pursuing innovative solutions to modern energy and optoelectronic challenges.

One of his key professional milestones includes leading the Guangxi Science and Technology Major Program (GuikeAA23062016). This ambitious research initiative demonstrates his leadership and technical capability in managing multi-disciplinary projects aligned with regional and national scientific goals. With no industry consultancies yet, Dr. Wang remains fully invested in academic research, pushing boundaries in materials science through both simulations and experimental designs.

Research Focus

Dr. Weijian Wang’s research is centered on the green synthesis and advanced application of halide perovskite materials, a field that is rapidly evolving due to its immense potential in next-generation energy and optoelectronic technologies. His work is particularly notable for developing environmentally friendly fabrication techniques, significantly reducing the environmental footprint of perovskite production. By leveraging simulation-assisted material design, Dr. Wang has enhanced the efficiency of perovskite-based solar cells, contributing to more sustainable energy solutions. Additionally, his innovations extend to optoelectronic applications, where he explores the integration of perovskites in high-performance LEDs and medical imaging technologies. With 11 SCI-indexed publications, including 8 as first or corresponding author, and 15 authorized invention patents as the lead inventor, Dr. Wang effectively translates scientific theory into practical, high-impact innovations that support both academic advancement and real-world applications.

Award and Recognition

Though still in the early stages of his academic career, Dr. Weijian Wang has already distinguished himself through the quality, innovation, and impact of his research contributions. He has published 11 articles in SCI-indexed international journals, showcasing his expertise in halide perovskite materials and their applications. As the first inventor on 15 authorized patents, Dr. Wang has demonstrated a strong ability to transform research insights into patentable, practical technologies. He also leads a major government-funded research initiative, underscoring his capacity to manage and deliver on large-scale scientific projects. With an H-index of 5, his work is gaining increasing visibility and recognition in the academic community. While he currently does not hold editorial positions or professional memberships, his growing body of work and innovation pipeline clearly mark him as a rising figure in materials science, poised for future leadership and accolades.

Publications

📖Aqueous synthesis of stable Pb(OH)Br:Cu red phosphor with DFT insights into its luminescence mechanism – Optical Materials (2025)
📖 Axial Ligand-Modified PdN4 as Efficient Electrocatalysts for the Two-Electron Oxygen Reduction Reaction: Insights from DFT -The Journal of Physical Chemistry (2025)
📖 Ameliorating Properties of Perovskite and Perovskite–Silicon Tandem Solar Cells via Mesoporous Antireflection Coating Model – Advanced Electronic Materials (2023)

Qiufan Wang | Sustainable Materials | Best Researcher Award | 13542

Dr. Qiufan Wang | Sustainable Materials | Best Researcher Award

Dr. Qiufan Wang, South-central minzu university, China

Dr. Qiufan Wang has made pioneering contributions to the advancement of aqueous multivalent-ion energy storage systems, particularly in zinc- and ammonium-ion batteries. His research integrates heterojunction engineering, interfacial tuning, and in-situ diagnostics to improve energy density, stability, and scalability of hybrid supercapacitors. With over 40 high-impact publications and 4 patents, his innovations have significantly influenced next-generation battery design. Dr. Wang actively collaborates across disciplines to prototype aqueous him as a key contributor in the field of sustainable electrochemical energy storage.

Author Profile

Scopus

Early Academic Pursuits

Dr. Qiufan Wang’s academic journey began with a strong foundation in materials science and electrochemistry, culminating in a Ph.D. inMaterialsElectrochemistry from the prestigious Huazhong University of Science and Technology. During his doctoral studies, he delved deeply into energy storage mechanisms, particularly focusing on battery materials and charge-transfer interfaces. His early work reflected a strong curiosity about sustainable energy solutions and an aptitude for innovation. With a passion for science and a growing interest in multivalent-ion batteries, Dr. Wang’s academic training laid the groundwork for a career devoted to advancing electrochemical storage technologies.

Professional Endeavors

Currently serving as an Associate Professor at South-Central Minzu University, Dr. Wang has quickly risen to prominence in the field of aqueous energy storage systems. His professional career is marked by a blend of academic rigor and applied innovation. Dr. Wang has taken on numerous leadership roles in multi-institutional research collaborations, working alongside scientists and engineers to design, synthesize, and test new materials for  batteries and supercapacitors. His work has contributed significantly to national research initiatives and academic development at his institution, where he is known for mentoring young researchers and supervising graduate students.

His research group focuses on hybrid energy storage devices that combine the best features of batteries and capacitors, thereby enabling the development of fast-charging, long-cycle, and safe energy storage systems suitable for next-generation electronics and grid applications.

Contributions and Research Focus

Dr. Wang’s research sits at the intersection of materials electrochemistry, interfacial engineering, and energy storage systems. His major contributions include the development of heterojunction-based electrode materials, particularly WS₂-MoS₂ hybrids, which exhibit enhanced charge transport and storage capacity in aqueous zinc- and ammonium-ion batteries.

He is also known for advancing dual-ion battery systems and micro-supercapacitors, employing in-situ spectroscopy and Density Functional Theory (DFT) to understand and optimize material behavior at the molecular level. His work has directly influenced the performance metrics of battery prototypes and has paved the way for safer, more efficient energy storage alternatives to traditional lithium-ion technology.

With over 40 publications in top-tier journals such as Advanced Functional Materials, ACS Nano, and Nano Energy, as well as four patents granted or under review, Dr. Wang’s research is widely cited and respected across the global scientific community.

Accolades and Recognition

Dr. Wang has earned national and institutional recognition for his cutting-edge contributions to battery science. He has been the recipient of multiple research grants, awards for academic excellence, and best paper honors. Although specific award names are undisclosed in the public domain, his publication and patent record reflect a high-impact career.

His research outputs are consistently published in Nature-indexed journals, and his expertise has led to collaborations with internationally renowned teams in both academia and industry. His position on several editorial and review boards underlines his influence and respect in the field of electrochemical materials.

Publications 

📘Revealing the Role of Topotactic Anion Exchange in the Robust Zn Ion Storage of CuS1-xTex – ACS Sustainable (2025)
📘Enhancing aqueous zinc-ion battery performance through a dual-mechanism strategy – Chemical Communications (2025)
📘Electronic Regulation Engineering of (NH4)0.25WO3 Anode Enables Fast and Stable Rocking-Chair Zinc-Ion Batteries – Nano Letters (2025)