Heer Wang | Environmental and Sustainable Materials | Research Excellence Award

Dr. Heer Wang | Environmental and Sustainable Materials | Research Excellence Award 

Kunming University of Science and Technology | China

Dr. Heer Wang is an emerging scholar in applied economics whose research lies at the intersection of industrial transformation, climate change, labor mobility, and sustainable economic development. His work explores how evolving economic structures and environmental shocks shape household behavior, productivity, and long-term growth pathways, particularly within developing and transitional economies. By integrating rigorous microeconometric evaluation methods with rich empirical data, he contributes meaningful insights into how societies adapt to climate risks and structural shifts. A major strand of his research investigates the socioeconomic consequences of climate variability, especially extreme rainfall and its implications for rural livelihoods. His publications in leading journals such as Science of The Total Environment and Applied Economic Perspectives and Policy highlight how climate shocks influence labor mobility, household vulnerability, agricultural productivity, and consumption smoothing. His studies provide evidence-based perspectives that deepen the understanding of how rural communities manage risk, adjust labor allocation, and navigate long-term adaptation strategies under environmental uncertainty. Another important area of his work focuses on industrial structure upgrading and technological capability. Through theoretical and empirical analyses published in the Asian Journal of Technology Innovation, his research examines the depth and sophistication of structural transformation, revealing how technological capacity and sectoral linkages drive high-quality economic development. His work contributes to policy discussions on how emerging economies can enhance industrial competitiveness while maintaining sustainable growth. In addition to published work, he has developed several working papers addressing market integration, climate-induced behavioral responses, and the dynamics of agricultural adaptation. These studies reflect a consistent research theme: understanding how economic agents respond to shocks and incentives within rapidly evolving socioeconomic environments. His research portfolio is reinforced by participation in multiple interdisciplinary and national research projects funded by major institutions. These projects span topics such as digital economy development, fertility policy evaluation, labor mobility under technological disruption, climate risk prediction using artificial intelligence, and the economic implications of population aging. His role across these initiatives demonstrates strong capabilities in empirical modeling, policy analysis, and data-driven decision support. He brings expertise in microeconometrics, policy evaluation techniques, and quantitative analysis using software platforms such as Stata, R, and SPSS. His work contributes directly to academic knowledge, policymaking, and practical interventions aimed at improving resilience, enhancing productivity, and supporting sustainable economic progress. Overall, his research advances critical conversations on how economies can navigate structural change while adapting to environmental and demographic challenges.

Citation Metrics (Google Scholar)

100
   80
   60
   50
   40
   30
   20
   10
     5
     0

Citations
31

Documents
3

h-index
2

Citations

Documents

h-index


View Google Scholar Profile

Featured Publications

Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Mr. Heng Liu | Environmental and Sustainable Materials | Research Excellence Award

Qingdao University of Science and Technology | China

Prof. Heng Liu is an accomplished materials scientist and professor at Qingdao University of Science and Technology, widely recognized for his significant contributions to organometallic catalysis and polymer chemistry. He earned his Ph.D. in 2015 from the Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), followed by productive postdoctoral research at the Technion – Israel Institute of Technology between 2015 and 2017. Upon returning to China, he served as an associate professor at CIAC before joining Qingdao University of Science and Technology as a full professor in 2020. Throughout his career, Prof. Liu has built an impressive portfolio of research achievements that reflect his scientific rigor, innovation, and leadership in advancing olefin and diene polymerization technologies. His research primarily focuses on the development of high-efficiency organometallic catalysts, the functionalization of polymers, and performance enhancement strategies for synthetic rubber materials—areas that hold major industrial relevance in the rubber, plastic, and advanced materials sectors. Prof. Liu has published 63 high-impact journal articles in prestigious publications such as Advanced Functional Materials, ACS Catalysis, Coordination Chemistry Reviews, Macromolecules, and other leading SCI-indexed platforms. His strong publication record is supported by a robust citation footprint in global scientific databases, reflecting the wide impact and recognition of his work within the research community. He has successfully led and participated in multiple funded research projects, including major grants from the National Natural Science Foundation of China (52573115, 22071236, 21801236), the Shandong Province Natural Science Foundation (ZR2024ME117), and the Taishan Scholar Foundation (202211165), demonstrating his capability to secure competitive funding for frontier research. Beyond academic projects, Prof. Liu has completed six consultancy and industry collaborations, reinforcing the practical applicability of his scientific innovations. He holds 18 patents, underscoring his commitment to translating research outcomes into technological advancements. His editorial contributions include serving on the editorial boards of Frontiers in Chemistry and China Synthetic Rubber Industry, where he supports scholarly communication and peer review in his field. Prof. Liu’s work is strengthened by active collaborations with researchers across institutions and countries, contributing to scientific progress through interdisciplinary engagement. With expertise spanning catalysis, polymer design, and advanced material fabrication, Prof. Liu continues to make substantial contributions to both fundamental science and industrial technology. His achievements, leadership, and innovation position him as a distinguished candidate for the Research Excellence Award.

Profile: Scopus | Orcid

Featured Publications

Polymer Chemistry (2025)

Zhang, H., Zhang, X., Zheng, H., Wang, F., Wei, X., Zhang, X., & Liu, H. (2025). Synthesis of α,ω-end hetero-functionalized polyisoprene via neodymium-mediated coordinative chain transfer polymerization. Polymer Chemistry. https://doi.org/10.1039/D4PY01452A

Journal of Applied Polymer Science (2025 – Nov 05)

Zheng, H., Zhang, H., Zhao, W., Wang, F., Zhang, X., & Liu, H. (2025). Controllable preparation of hydroxyl-terminated liquid polydiene rubber featuring high 1,4-content by neodymium-mediated coordinative chain transfer polymerizations strategy. Journal of Applied Polymer Science. https://doi.org/10.1002/app.57602

Journal of Applied Polymer Science (2025 – Mar 10)

Li, X., Zhang, X., Wang, F., Liu, W., Zhang, X., & Liu, H. (2025). Neodymium-mediated coordinative chain transfer homopolymerization of bio-based myrcene and copolymerization with butadiene and isoprene. Journal of Applied Polymer Science. https://doi.org/10.1002/app.56557

Macromolecules (2025 – Feb 25)

Wang, X., Ma, L., Dong, B., Zhang, C., Zhang, X., & Liu, H. (2025). Axial anagostic interaction in α-diimine nickel catalysts: An ultraefficient occupation strategy in suppressing associative chain transfers to achieve UHMWPEs. Macromolecules, 58(?), pages pending. https://doi.org/10.1021/acs.macromol.4c03244

Molecular Catalysis (2024)

Liu, X., Yang, Q., Zhang, C., Zhang, X., & Liu, H. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope. Molecular Catalysis, 114082. https://doi.org/10.1016/j.mcat.2024.114082

SSRN Preprint (2024)

Liu, H., Liu, X., Zhang, C., Yang, Q., & Zhang, X. (2024). 3,4-selective polymerization of isoprene by iron-based system: The key role of borate salts for enhancing catalytic activities and broadening 1,10-phenanthroline ligand scope [Preprint]. SSRN. https://doi.org/10.2139/ssrn.4690393