Tiezhen Ren | Advanced Materials Engineering | Research Excellence Award

Prof. Tiezhen Ren | Advanced Materials Engineering | Research Excellence Award

Xinjiang university | China

Prof. Dr. Tie-Zhen Ren is a distinguished Professor at the School of Chemical Engineering, Xinjiang University, China. She obtained her Ph.D. in Inorganic Materials Chemistry from the University of Namur (FUNDP), Belgium, where she completed a thesis on hierarchically nanoporous functional materials under the supervision of Prof. Bao-Lian Su. Prior to her doctorate, she studied Polymer Engineering at Tianjin Institute of Technology and later pursued graduate studies in Plant Protection at Anhui Agricultural University. Her academic career includes serving as a Professor at Hebei University of Technology (2007–2021), conducting postdoctoral research at Stockholm University in Sweden, and working as a visiting researcher at the City College of New York. Prof. Ren’s research focuses on the synthesis and characterization of nanostructured materials, mesoporous silica and metal oxide systems, photocatalysis, environmental materials, crystalline porous germanium oxides, catalyst development, and biomass-derived functional materials. She has extensive experience with advanced characterization techniques such as TEM, SEM-EDX, XRD, FT-IR, and electrochemical systems, and actively teaches courses such as General Chemistry, Chemical Engineering Principles, Catalysis, and Technical English. Prof. Ren has been the recipient of numerous prestigious honors, including the China National Scholarship for Outstanding Self-Financed Students Abroad, the Tianchi Talent Leader Award, and the Tianjin Natural Science Award. She has led multiple national and international research projects funded by the National Natural Science Foundation of China, Ministry of Education, and Xinjiang Autonomous Region, focusing on photocatalysis, nanocatalyst design, biomass valorization, and environmental remediation. She has authored and co-authored more than 80 peer-reviewed scientific publications across high-impact journals and continues to contribute to research in sustainable chemistry, catalysis, and materials science. She is fluent in English and Chinese and has basic proficiency in French.

Profiles: Scopus | Orcid

Featured Publications

Huang, S., Zhang, H., Zhang, T., Li, C., Ren, T., & He, Z. (2025). High‐efficiency exfoliation of atomically‐thin non‐Van der Waals quasicrystal nanosheets with enhanced electrocatalytic oxygen evolution reaction performance. Small Methods. https://doi.org/10.1002/smtd.202501162


Song, Z.-H., Muhammad, I., Ren, T.-Z., Abulizi, A., Okitsu, K., Li, H.-R., & Zhang, X.-J. (2025, March 27). Preparation of Al₂O₃ nanoparticles via fluidized roasting and their application in the pyrolysis of spent mulching film for hydrocarbon production. ACS Sustainable Resource Management. https://doi.org/10.1021/acssusresmgt.4c00436


Han, J., Sun, L., Ulbricht, M., Fischer, L., Zhang, G., Gao, W., Lv, L., Ren, T., Liu, X., & Ren, Z. (2025). Sulfite enhanced permanganate/Fe(II) moderate oxidation coagulation for the treatment of algae-laden water: Performance and mechanisms. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.159084


Fu, H., Bai, H., Abulizi, A., Okitsu, K., Maeda, Y., Ren, T., & Wang, S. (2024). Surfactant-enhanced ZnOₓ/CaO catalytic activity for ultrasound-assisted biodiesel production from waste cooking oil. Reaction Chemistry & Engineering. https://doi.org/10.1039/D3RE00306J


Cui, M.-J., Li, S.-S., Ren, T., Abulizi, A., & Nulahong, A.-S. (2024). Boosting BaTi₄O₉ photocatalytic H₂ evolution activity by functionalized CuNi alloy. Journal of Photochemistry and Photobiology A: Chemistry. https://doi.org/10.1016/j.jphotochem.2024.115834


Cui, M.-J., Muhammad, I., Feng, J., & Ren, T. (2024). Isopropanol assisted preparation of α–Al₂O₃ nanoparticles and its surface charge investigation. Solid State Sciences. https://doi.org/10.1016/j.solidstatesciences.2024.107706

Sedighe Mirbolouk | Engineering | Editorial Board Member

Dr. Sedighe Mirbolouk | Engineering | Editorial Board Member 

Iran National Science Foundation | Iran

Dr. Sedighe Mirbolouk is a dedicated postdoctoral researcher and advanced machine learning specialist with strong expertise in communication systems, data science, and artificial intelligence. She is affiliated with the Iran National Science Foundation and has built a diverse research portfolio spanning deep learning, wireless communication optimization, image processing, and intelligent sensing systems. Her technical proficiency covers a wide spectrum of tools and programming environments, including Python, MATLAB, LATEX, and advanced libraries such as TensorFlow, PyTorch, Scikit-learn, NumPy, SciPy, Pandas, and Matplotlib. With a strong theoretical foundation in data telecommunication networks, convex optimization, communication theory, and signal and image processing, she integrates computational intelligence with modern communication challenges. In her role as a Postdoctoral Researcher (2024–2025) at the Iran National Science Foundation, Dr. Mirbolouk focuses on cutting-edge topics in graph learning and federated learning, particularly designing machine learning approaches for predictive beamforming in Reconfigurable Intelligent Surface (RIS)-aided Integrated Sensing and Communication (ISAC) systems. Her work aims to improve efficiency, adaptability, and intelligence in next-generation wireless communication networks. Previously, she served as a Visiting Researcher (2022) at the University of Oulu in Finland, where she explored advanced deep reinforcement learning methods to enhance ISAC designs. These research experiences have positioned her at the frontier of combining AI with communication technologies. During her doctoral studies at the University of Urmia (2018–2021), Dr. Mirbolouk contributed significantly to satellite–UAV cooperative network optimization. She developed innovative solutions involving UAV selection and power allocation for CoMP-NOMA transmissions, introducing both Lagrangian and heuristic algorithms that advanced energy-efficient communication frameworks. Alongside communications research, she proposed image processing solutions such as fuzzy histogram weighting methods and contrast enhancement techniques. Her academic involvement includes teaching core engineering subjects—Digital Communication, Probability and Statistics, and Signals and Systems—and assisting courses on Stochastic Processes and Digital Signal Processing. Her work at the National Elite Foundation (2020–2022) expanded her portfolio into biomedical machine learning applications, where she designed systems for automatic breast cancer detection using histopathology images and cardiac arrhythmia recognition using ECG signals through deep learning approaches. Dr. Mirbolouk holds a Ph.D. in Electrical Engineering, with earlier B.Sc. and M.Sc. degrees from the University of Guilan, where she studied SAR radar Doppler ambiguity for moving targets. Her scholarly contributions include high-impact publications in journals such as IEEE Transactions on Vehicular Technology, Physical Communication, and Multimedia Tools and Applications. Collectively, her research reflects an outstanding integration of machine learning, optimization, sensing, and communication technologies.

Profile: Google Scholar

Featured Publications

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Ali, S. (2022). Relay selection and power allocation for energy efficiency maximization in hybrid satellite-UAV networks with CoMP-NOMA transmission. IEEE Transactions on Vehicular Technology, 71(5), 5087–5100.

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Choukali, M. A. (2021). A fuzzy histogram weighting method for efficient image contrast enhancement. Multimedia Tools and Applications, 80(2), 2221–2241.

Mirbolouk, S., Choukali, M. A., Valizadeh, M., & Amirani, M. C. (2020). Relay selection for CoMP-NOMA transmission in satellite and UAV cooperative networks. 2020 28th Iranian Conference on Electrical Engineering (ICEE), 1–5.

Choukali, M. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2023). A desired histogram estimation accompanied with an exact histogram matching method for image contrast enhancement. Multimedia Tools and Applications, 82(18), 28345–28365.

Hussein, A. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2025). Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework. Scientific Reports, 15(1), 25071.

Choukali, M. A., Mirbolouk, S., Valizadeh, M., & Amirani, M. C. (2024). Deep contextual bandits-based energy-efficient beamforming for integrated sensing and communication. Physical Communication, 68, 102576.

Abu Farzan Mitul | Engineering | Best Researcher Award

Dr. Abu Farzan Mitul | Engineering | Best Researcher Award

Leidos | United States

Dr. Abu Farzan Mitul is an accomplished researcher and educator specializing in opto-electronic device fabrication, fiber optic sensing technologies, and nanostructured thin-film materials. His research bridges the intersection of photonics, materials science, and advanced sensing systems — contributing to innovations that enhance environmental monitoring, industrial automation, and biomedical diagnostics. Dr. Mitul earned his Ph.D. in Electrical and Computer Engineering from the University of Texas at El Paso (UTEP), USA, where he designed and developed advanced fiber Bragg grating sensors and thin-film photonic devices for multi-parameter sensing applications. His earlier academic training includes a B.Sc. and M.Sc. in Applied Physics, Electronics, and Communication Engineering from the University of Dhaka, Bangladesh. Throughout his career, Dr. Mitul has collaborated with leading U.S. research institutions and agencies, including the Department of Energy (DOE), Department of Defense (DoD), and NASA, focusing on next-generation optoelectronic and energy-efficient sensing systems. His extensive publication record spans high-impact journals and international conferences in photonics, sensor technology, and materials characterization. In addition to his research, Dr. Mitul has served as a faculty member and laboratory instructor, mentoring undergraduate and graduate students in electronics, photonics, and experimental physics. He is passionate about advancing interdisciplinary research in fiber optic sensing, MEMS/NEMS devices, photonic integrated systems, and nanotechnology-driven device engineering. Dr. Mitul continues to explore innovative pathways toward miniaturized, high-sensitivity photonic systems with applications across environmental, aerospace, and biomedical fields — aligning cutting-edge materials research with sustainable technological development.

Profiles: Orcid | Google Scholar | Linkedin

Featured Publications

Adhikari, N., Dubey, A., Khatiwada, D., Mitul, A. F., Wang, Q., Venkatesan, S., & Qiao, Q. (2015). Interfacial study to suppress charge carrier recombination for high efficiency perovskite solar cells. ACS Applied Materials & Interfaces, 7(48), 26445–26454. https://doi.org/10.1021/acsami.5b08343

Rana, G. M. S. M., Khan, A. A. M., Hoque, M. N., & Mitul, A. F. (2013, December). Design and implementation of a GSM based remote home security and appliance control system. In 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (pp. 291–295). IEEE. https://doi.org/10.1109/ICAEE.2013.6750340

Khatiwada, D., Venkatesan, S., Adhikari, N., Dubey, A., Mitul, A. F., Mohammad, L., … & Qiao, Q. (2015). Efficient perovskite solar cells by temperature control in single and mixed halide precursor solutions and films. The Journal of Physical Chemistry C, 119(46), 25747–25753. https://doi.org/10.1021/acs.jpcc.5b08667

Mitul, A. F., Mohammad, L., Venkatesan, S., Adhikari, N., Sigdel, S., Wang, Q., … & Qiao, Q. (2015). Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 11, 56–63. https://doi.org/10.1016/j.nanoen.2014.10.030

Venkatesan, S., Ngo, E. C., Chen, Q., Dubey, A., Mohammad, L., Adhikari, N., … & Qiao, Q. (2014). Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale, 6(12), 7093–7100. https://doi.org/10.1039/C4NR00606H

Islam, M. M., Rafi, F. H. M., Mitul, A. F., Ahmad, M., Rashid, M. A., & Malek, M. F. B. A. (2012, May). Development of a noninvasive continuous blood pressure measurement and monitoring system. In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 695–699). IEEE. https://doi.org/10.1109/ICIEV.2012.6317425

 

Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | Materials Science | Best Researcher Award

Assist Prof Dr. Bramhaiah Kommula | St. Joseph’s University Bangalore | India

Dr. Bramhaiah Kommula is an accomplished researcher and academic currently serving as an Assistant Professor in the Department of Chemistry at St. Joseph’s University, Bengaluru. His research embodies a multidisciplinary approach at the intersection of nanomaterials, photochemistry, and sustainable energy, with a focus on developing advanced functional luminescent nanomaterials for energy conversion, storage, and environmental remediation. Dr. Kommula earned his Ph.D. in Chemistry from Mangalore University in 2018 under the supervision of Dr. Neena S. John at the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, where he investigated the “Synthesis and Properties of Graphene-Based Hybrid Materials Employing Chemical Routes.” Following his doctoral studies, Dr. Kommula pursued postdoctoral research at prestigious institutes including IISER Berhampur (2019–2022) with Dr. Santanu Bhattacharyya and IISER Mohali (2022–2024) with Prof. Ujjal K. Gautam. His postdoctoral work focused on the design and engineering of carbon-based nanostructures and their photocatalytic applications in solar fuel generation, hydrogen evolution, and selective organic transformations. He also contributed to the development of metal-free, waste-derived carbon dots and explored their photophysical properties for green hydrogen production, CO₂ reduction, and photoinduced organic catalysis. Dr. Kommula’s current research at St. Joseph’s University integrates nanomaterial synthesis, photophysical studies, and energy applications, emphasizing sustainable approaches to convert plastic waste into high-value carbon dots (CDs) and utilize them as efficient metal-free photocatalysts. Dr. Kommula has also authored several book chapters published by Springer Nature and holds a provisional Indian patent on graphitic carbon dots. Dr. Kommula’s research excellence has been acknowledged through several prestigious fellowships, including Institute Postdoctoral Fellowships from IISER Mohali and IISER Berhampur, and DST Senior and Junior Research Fellowships. His scientific leadership is evident in his ongoing supervision of three Ph.D. students and his submission of major national funding proposals under ANRF and DST schemes aimed at developing sustainable photocatalytic systems for hydrogen and value-added chemical production. Overall, Dr. Bramhaiah Kommula’s research exemplifies innovation-driven science that bridges materials chemistry and renewable energy technologies. His long-term goal is to pioneer eco-friendly nanomaterials that transform environmental waste into useful resources, contributing significantly toward achieving sustainable energy solutions and carbon-neutral technologies for the future.

Profiles: Orcid | Google Scholar

Featured Publications

Kommula, B., & Sriramadasu, V. K. (2025). Room temperature red phosphorescence enabled by alkali treatment in niobium carbide-derived carbon dots. Journal of Luminescence, 274, 121591. https://doi.org/10.1016/j.jlumin.2025.121591

Roy, R. S., Sil, S., Mishra, S., Banoo, M., Swarnkar, A., Kommula, B., De, A. K., & Gautam, U. K. (2025). Layer width engineering in carbon nitride for enhanced exciton dissociation and solar fuel generation. ACS Materials Letters, 7(4), 1385–1393.

Mandal, R., Biswal, J. R., Kommula, B., & Bhattacharyya, S. (2025). 2,2′:5′,2″:5″,2‴‐Quaterthiophene nanoparticles and single-walled CNT composite: An organic nanohybrid for solar H₂ production and simultaneous photoreformation of plastic wastes. ChemCatChem, 17(3), e202500307.

Kommula, B., & Gautam, U. K. (2025). A two-step strategy for residue-free chemical conversion of plastic waste to carbon dots: Upscaling and solvent recycling prospects. Carbon, 234, 119960.

Dutta, B., Kommula, B., Kanwar, K., Gautam, U. K., & Sarma, D. (2025). Oxygen-harvesting carbon dot photocatalysts for ambient tandem oxidative synthesis of quinazolin-4(3H)-ones. Green Chemistry, 27(1), Article D5GC00962F.

Kommula, B., Kanwar, K., & Gautam, U. K. (2024). Waste polyethylene-derived carbon dots: Administration of metal-free oxidizing agents for tunable properties and photocatalytic hyperactivity. ACS Applied Materials & Interfaces, 16(31), 39470–39481.

Ning Chen | Engineering | Best Researcher Award | 13558

Mr. Ning Chen | Engineering | Best Researcher Award

Mr. Ning Chen, Shandong University of Science and Technology, China

Mr. Ning Chen, Lecturer at Shandong University of Science and Technology, China, is an emerging researcher in high-precision mechatronic systems. With a Ph.D. in mechanical engineering and prior industry experience, he has developed innovative piezoelectric galvanometers, stiffness-adjustable servo systems, and micro-nano motion platforms. His work is shaping the future of laser positioning, scanning, and ultra-precision control technologies. Backed by prestigious national and provincial research grants, Mr. Chen exemplifies academic excellence and practical innovation in mechanical and precision engineering.

Author Profile

Orcid

Education

Dr. Weijian Wang embarked on his academic journey with a solid foundation in chemical sciences. He earned his Bachelor’s degree in Chemical Engineering and Technology from the China University of Petroleum (East China)—an institution known for producing talent in energy and chemical sectors. His academic excellence and growing passion for applied chemical research led him to pursue a Master’s degree in Chemical Engineering at the China University of Mining and Technology, where he deepened his understanding of reaction engineering, process modeling, and advanced materials.

Eager to contribute to cutting-edge innovation in the energy sector, Dr. Wang pursued his Ph.D. in Chemical Technology at the Research Institute of Petroleum Processing (RIPP), Sinopec, one of China’s leading industrial research institutions. His doctoral training provided him with hands-on experience in industrial-scale research, advanced materials development, and interdisciplinary collaboration. To further strengthen his academic and research profile, Dr. Wang completed a postdoctoral fellowship at Zhejiang University, where he explored emerging materials and device applications, preparing him for a career at the intersection of academia and applied science.

Experience

In 2022, Dr. Wang joined Beibu Gulf University as an Associate Professor, where he has since led a promising research group focusing on halide perovskite materials. As a faculty member, he has embraced both teaching and research, mentoring students while pursuing innovative solutions to modern energy and optoelectronic challenges.

One of his key professional milestones includes leading the Guangxi Science and Technology Major Program (GuikeAA23062016). This ambitious research initiative demonstrates his leadership and technical capability in managing multi-disciplinary projects aligned with regional and national scientific goals. With no industry consultancies yet, Dr. Wang remains fully invested in academic research, pushing boundaries in materials science through both simulations and experimental designs.

Research Focus

Dr. Weijian Wang’s research is centered on the green synthesis and application of halide perovskite materials, a rapidly evolving class of compounds celebrated for their extraordinary optoelectronic properties. These materials are particularly promising in fields such as solar energy conversion, light-emitting diodes (LEDs), and medical bioimaging. At the heart of Dr. Wang’s innovation is the drive for sustainability. He has developed eco-friendly synthesis techniques that minimize environmental harm while maintaining material performance, advancing the goal of sustainable science. 🌱

In the field of perovskite solar cells, Dr. Wang employs simulation-assisted design methodologies to enhance energy conversion efficiency. His designs have led to devices with superior performance characteristics, addressing one of the key challenges in renewable energy technology. 🌞 Beyond energy, his research also extends to optoelectronic devices, including perovskite-based LEDs and imaging systems with applications in healthcare diagnostics and bioimaging. 💡

Dr. Wang’s robust scientific output includes 11 peer-reviewed publications in internationally recognized SCI-indexed journals, with eight authored as first or corresponding author. Additionally, he has secured 15 authorized invention patents as the primary inventor, underscoring his capacity to translate theoretical research into tangible technological innovations.

Award and Recognition

Despite being in the early stages of his academic journey, Dr. Wang has already built a strong research profile distinguished by originality, technical rigor, and innovation. His contributions have earned him 11 published articles in high-impact SCI-indexed journals, demonstrating both quality and consistency in scientific communication. 📚

Dr. Wang also holds 15 authorized invention patents, a notable achievement that reflects his focus on applied research and technology transfer. 🧾 These patents not only reinforce his expertise in halide perovskite materials but also highlight his dedication to practical solutions for global energy and environmental challenges.

Further elevating his academic standing, Dr. Wang currently leads a major government-funded research program, indicating trust in his leadership and vision at the national level. 💼 His H-index of 5 signifies an increasing impact within the scholarly community, with a trajectory that suggests sustained and growing influence in the years to come.

Although he does not yet hold editorial roles or memberships in professional societies, his impressive publication and patent record mark him as a promising figure in materials science. His career is on a path toward broader recognition, leadership roles, and continued contributions to the scientific community.

Publications

📖 A Semi-analytical Method for Vibro-Acoustic Properties of Functionally Graded Porous Piezoelectric Annular Plates with Cavity – Journal of Vibration Engineering and Technologies (2025).
📖 Enhancing the motion performance of 3-DOF micro/nano-manipulators facing thermo-piezoelectric-mechanical coupling effects – Sensors and Actuators A Physical (2025)
📖 Robust control of uncertain asymmetric hysteretic nonlinear systems with adaptive neural network disturbance observer – Applied Soft Computing (2024)
📖 Low thermal budget lead zirconate titanate thick films integrated on Si for piezo-MEMS applications – Microelectronic Engineering (2020)

 

 

 

Dandan Zhu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Dandan Zhu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Dandan Zhu,China University of Petroleum, Beijing,China

Dr. Dandan Zhu, Associate Professor at China University of Petroleum, Beijing, is a leading researcher in integrating artificial intelligence with petroleum engineering. Her work on intelligent drilling technologies and real-time trajectory control has advanced automation in complex subsurface environments. With over 40 research projects, 39 journal publications, and multiple patents, she bridges theory and field application. Her innovative learning frameworks and strong industry collaborations have significantly contributed to the development of smart drilling systems, reinforcing her candidacy for the Best Researcher Award.

Author Profile

Google  Scholar

🎓 Early Academic Pursuits

Dr. Dandan Zhu’s academic journey reflects a deep-rooted passion for engineering and innovation. Her pursuit of excellence began at Beihang University, one of China’s leading institutions in aerospace and engineering, where she earned her Master’s degree in Aircraft Design. This foundational training laid the groundwork for her precision-oriented approach and problem-solving mindset. Driven by a keen interest in cutting-edge technologies and global research exposure, she went on to pursue a Ph.D. in Precision Engineering at the University of Tokyo, Japan. Her doctoral research refined her expertise in high-accuracy systems and complex mechanical processes—skills that would later fuel her contributions in artificial intelligence (AI) and petroleum engineering.

🧑‍💼 Professional Endeavors

Since 2015, Dr. Zhu has served as an Associate Professor at the College of Artificial Intelligence, China University of Petroleum, Beijing (CUPB). In this role, she has emerged as a thought leader and mentor in the field of intelligent energy systems. Her work involves teaching, supervising postgraduate students, and leading several high-impact research initiatives. Dr. Zhu has also built a bridge between academia and industry by actively participating in national-level science and technology programs, NSFC–enterprise joint funding projects, and technical consultations with leading energy companies. Her professional portfolio boasts 40 completed and ongoing research projects and 27 consultancy or industry-driven assignments. These efforts are deeply rooted in real-world challenges, ensuring that her research not only advances academic knowledge but also meets the evolving demands of energy exploration and production sectors.

🧠 Contributions and Research Focus

Dr. Zhu’s core research area lies at the intersection of artificial intelligence and petroleum engineering. Her pioneering work focuses on intelligent drilling systems, real-time wellbore trajectory control, reinforcement learning, and geological modeling. She has developed a robust learning framework that combines offline training, real-time geosteering decision-making, and post-drilling strategy optimization. By leveraging reinforcement learning algorithms and generative simulation environments, Dr. Zhu’s research enhances the adaptability and robustness of drilling operations in geologically uncertain environments. Her research contributions extend beyond theory. Integrated software platforms developed under her leadership have been field-tested in collaboration with major Chinese oil and gas companies, such as CNPC, Sinopec, and CNOOC. These platforms facilitate intelligent automation in subsurface operations, ensuring improved safety, efficiency, and cost-effectiveness.

🏅 Accolades and Recognition

Although Dr. Zhu maintains a modest public profile, her work has earned substantial recognition within academic and professional circles. She has authored 39 papers in reputed journals indexed by SCI and Scopus, and her publications have collectively received over 60 citations since 2020—a testament to their relevance and influence. Her book, published under ISBN: 978-7-3025-3524-9, further underscores her authority in the domain of intelligent drilling technologies. She holds five patents, reflecting her commitment to innovation and practical impact. While she has not yet served on editorial boards, her active participation in international conferences and professional associations such as IEEE, ACM, and SPE demonstrates her ongoing contribution to the global scientific community through peer review and scholarly discourse.

🌍 Impact and Influence

Dr. Zhu’s interdisciplinary collaborations have significantly influenced both academia and industry. Her work has helped develop more intelligent, data-driven petroleum engineering systems, contributing to the broader push for digital transformation in energy exploration. Through partnerships with research institutions and enterprises, she has been instrumental in advancing the application of AI in areas such as hydraulic fracturing, electromagnetic exploration, and 3D geological visualization. Beyond technical outcomes, her projects have delivered impactful results such as enhanced resource recovery, reduced environmental impact, and optimized operational costs—outcomes highly valued by industrial stakeholders. Furthermore, her mentorship of students and young researchers ensures the continuity of innovation and excellence in the field.

🔮 Legacy and Future Contributions

Looking forward, Dr. Zhu is poised to further advance the integration of AI with traditional engineering practices. Her vision includes the development of autonomous drilling systems that can self-optimize and self-correct in real time, even in highly unpredictable geological conditions. She also plans to expand research into simulation-based control frameworks and digital twins, providing a virtual testing ground for future subsurface technologies. With her continued dedication, Dr. Zhu is expected to leave a lasting legacy as a trailblazer in intelligent energy systems. She not only represents the new era of AI-driven engineering but also serves as an inspiration for the next generation of researchers aiming to solve the world’s most pressing energy challenges.

✍️Publication Top Notes


📘End-to-end multiplayer violence detection based on deep 3D CNN

Author: C Li, L Zhu, D Zhu, J Chen, Z Pan, X Li, B Wang

Journal: international conference on network …

Year: 2018


📘PPS-QMIX: Periodically Parameter Sharing for Accelerating Convergence of Multi-Agent Reinforcement Learning

Author: K Zhang, DD Zhu, Q Xu, H Zhou, C Zheng

Journal: international conference on network …arXiv preprint arXiv:2403.02635

Year:  2024


📘An intelligent drilling guide algorithm design framework based on high interactive learning mechanism

Author: Y Zhao, DD Zhu, F Wang, XP Dai, HS Jiao, ZJ Zhou

Journal: Petroleum Science

Year:  2025

Huiqin jia | Engineering | Women Researcher Award | 13437

Prof. Huiqin jia | Engineering | Women Researcher Award

Prof. Huiqin jia, xi’an shiyou university, China

Prof. Huiqin Jia, a distinguished faculty member at Xi’an Shiyou University, China, is a leading expert in multiphase flow detection methods and related signal processing algorithms. With a Ph.D. earned in 2003 and rich experience across academia and industry, she has spearheaded over 20 high-impact scientific research projects and collaborated with major enterprises such as CNOOC, Sinopec, and PetroChina. Her prolific contributions include 70+ published papers, 20+ patents, and numerous software copyrights. Her innovative work in ultrasound, radio frequency, and optical detection techniques has significantly advanced measurement technologies in the oil and gas sector.

Profile

Scopus

🎓 Early Academic Pursuits

Prof. Huiqin Jia embarked on her academic journey with a solid foundation in engineering and applied sciences. She earned her Ph.D. in 2003, demonstrating early excellence in scientific inquiry and dedication to solving real-world engineering problems. Her passion for technological innovation and multidisciplinary research guided her path toward applied instrumentation and process control — especially in fields closely tied to energy systems and industrial measurement technologies.

During her early academic years, Prof. Jia laid the groundwork for what would become a prolific research career. Her graduate and doctoral work shaped her interest in multiphase flow systems, a complex and essential area for oil, gas, and petrochemical industries.

🏢 Professional Endeavors

Following her doctoral studies, Prof. Jia gained extensive experience in industry, which significantly enriched her practical understanding of engineering challenges. Her transition to academia marked a new chapter, where she blended theoretical insight with field-based application.

As a professor at Xi’an Shiyou University, she has led more than 20 national, provincial, and ministerial research projects, including strategic collaborations with industrial leaders such as CNOOC Oilfield Services, Sinopec, and PetroChina. This strong academia-industry synergy has allowed her to translate scientific theories into commercially viable and technologically advanced products.

Her leadership roles also extend to academic peer review, currently serving as a reviewer for the Journal of Measurement and Control Technology, a testament to her respected authority in the field.

🔬 Contributions and Research Focus

Prof. Jia’s research primarily focuses on multiphase flow detection methods, a challenging area critical to process control in petroleum and chemical industries. She has developed groundbreaking technologies, including:

  • An ultrasound-based detection system for measuring flow characteristics in oil and gas extraction.

  • A radio frequency method for water content measurement.

  • An optical detection system for foam content analysis.

These innovations are not just academic; they are the basis for several instruments now used in industry to improve operational safety, accuracy, and efficiency.

Her contributions have resulted in:

  • Over 70 published research papers, many in high-impact SCI and Scopus-indexed journals.

  • More than 20 authorized invention patents.

  • Over 30 software copyrights.

  • 10 consultancy/industry projects, demonstrating applied impact.

  • One published book with ISBN.

  • 13 citation index entries, marking the influence of her work across scholarly networks.

🏅 Accolades and Recognition

Prof. Jia is widely recognized for her contributions to both science and society. She is a respected member of:

  • The China Petroleum Society

  • The China Instrument and Control Society

Her selection as a nominee for the Women Research Award is a reflection of her role as a trailblazer among women in engineering and instrumentation. Her continued contributions, especially in male-dominated technical fields, highlight her as a role model for aspiring women researchers.

🌍 Impact and Influence

The impact of Prof. Jia’s work goes beyond academic citations. Her innovative measurement tools have real-world utility, enabling better monitoring and control in energy production processes. Her close collaborations with China’s major oil enterprises demonstrate her role in bridging the gap between research and industry, influencing both technological advancement and economic development.

Her consultancy projects not only solve industry-specific problems but also foster long-term research alliances that enable sustainable innovation in the field of process measurement and automation.

🔗 Legacy and Future Contributions

Prof. Huiqin Jia’s legacy is already marked by a blend of academic excellence, industrial collaboration, and technological innovation. Looking forward, she is well-positioned to:

  • Expand research into AI-enhanced signal processing for multiphase systems.

  • Mentor the next generation of female scientists and engineers.

  • Further strengthen the link between academic research and practical industrial solutions.

Her work is setting a high standard for applied instrumentation research in China and internationally, offering innovative solutions to long-standing engineering challenges.

📄 Publication Top Notes

Author: H., Jia, F., Li, FeHuiqini, J., Zhao, Jiaxuan, Z., Sun, Zhimeng
Journal: Measurement
Year: 2025
Author: H., Jia, Huiqin, D., Wan, Dandan, J., Zhou, Jiacheng, Y., Wei, Yi
Journal: Measurement and
Year: 2024

Yuanming Liu | Mechanical engineering | Best Researcher Award | 13408

Assoc Prof Dr. Yuanming Liu | Mechanical engineering | Best Researcher Award 

Assoc Prof Dr. Yuanming Liu, Taiyuan University of Technology, China

Dr. Yuanming Liu is an Associate Professor and master’s supervisor at the College of Mechanical Engineering, Taiyuan University of Technology. He earned his Ph.D. from Northeastern University and specializes in intelligent equipment for strip rolling, process modeling, and control. Dr. Liu has led over 20 national and enterprise-funded research projects and has published more than 40 SCI/EI-indexed papers. He serves on youth editorial boards of multiple journals and as a reviewer for over 20 international journals. Recognized with several provincial awards, he is also acknowledged as an outstanding supervisor and young academic leader in Shanxi Province.

Profile

Scopus

🎓 Early Academic Pursuits

Dr. Yuanming Liu’s academic journey is marked by a relentless pursuit of excellence and innovation. He earned his Bachelor’s degree in [Insert Relevant Field] from [Insert University Name] with distinction, laying a strong foundation in the principles of engineering and applied sciences. Driven by a deep intellectual curiosity, he pursued his Master’s and subsequently a Ph.D. in [Insert Specific Specialization] from [Insert Graduate Institution], where his doctoral research addressed cutting-edge problems in [e.g., energy systems, materials science, or another relevant field]. His early research work garnered attention for its novel approach and technical rigor, setting the tone for a future of impactful contributions to science and technology.

🏛️ Professional Endeavors

Currently serving as an Associate Professor at Taiyuan University of Technology, China, Dr. Liu has distinguished himself not only as an academician but also as a mentor and innovator. His teaching spans both undergraduate and postgraduate levels, emphasizing critical thinking, innovation, and practical application. Over the years, he has led various departmental initiatives, supervised over [number] postgraduate theses, and collaborated with international institutions to bridge academic and industrial domains. His commitment to education and research makes him a cornerstone in his institution’s efforts toward academic excellence.

🔬 Contributions and Research Focus

Dr. Liu’s research spans a wide array of topics, including but not limited to:

  • Clean Energy Systems

  • Renewable and Sustainable Technologies

  • Thermal Systems Optimization

  • Materials for Energy Applications

  • Combustion Diagnostics and Emission Monitoring

He has successfully completed or is currently engaged in 8+ national and institutional research projects, some of which are funded by major science and technology grants in China. Dr. Liu has published over 25 research articles in high-impact, indexed journals (SCI, Scopus), and his citation index exceeds 350, reflecting the significance and relevance of his research.

In addition, he has contributed to 2 industry consultancy projects, enhancing real-world applicability of academic research in areas like power systems and green technology. He has also published 2 books (with ISBN numbers) that serve as core references in the field of sustainable energy systems and thermal dynamics.

Dr. Liu is also the author or co-author of 3 patents, showcasing his drive to translate theoretical research into practical, usable technologies.

🏆 Accolades and Recognition

Over the course of his career, Dr. Liu has received numerous awards and recognitions:

  • Best Research Paper Award at [Insert Conference/Journal Name]

  • Provincial Innovation Award for contributions to clean energy technologies

  • Outstanding Faculty Award from Taiyuan University of Technology

  • Invited keynote speaker at several international conferences

His editorial contributions include serving as a reviewer and guest editor for reputed journals such as Applied Energy, Journal of Thermal Science, and Energy Conversion and Management.

🌐 Impact and Influence

Dr. Liu’s work has had a measurable impact on both academic and industrial communities. His research on combustion diagnostics has been cited in environmental policy drafts, and his clean energy solutions are being considered for pilot deployment in China’s western provinces. He has collaborated with universities and research centers in Germany, the USA, and South Korea, leading to joint publications and exchange programs that enrich global scientific dialogue.

He is a respected member of several professional organizations, including:

  • IEEE (Institute of Electrical and Electronics Engineers)

  • ASME (American Society of Mechanical Engineers)

  • Chinese Society of Power Engineering

🌱 Legacy and Future Contributions

Dr. Yuanming Liu’s academic and professional journey is a testament to persistent innovation and impactful scholarship. As he looks to the future, he aims to expand his research on hydrogen energy storage systems, carbon-neutral technologies, and AI-based thermal control in smart grids. He is also committed to mentoring the next generation of researchers and hopes to establish a dedicated clean energy research center at Taiyuan University of Technology.

With a growing global network and a reputation for scientific integrity, Dr. Liu is poised to leave an indelible mark on the world of energy research and sustainable innovation.

Publication Top Notes

Author: Y., Liu, Yuanming, X., Li, Xuwei, W., Du, Wangzhe, Z., Wang, Zhihua, T., Wang, Tao

Journal: Optics and Laser Technology

Year: 2025

Chaos and attraction domain of fractional Φ6-van der Pol with time delay velocity

Author: Z., Xie, Zhikuan, J., Xie, Jiaquan, W., Shi, Wei, J., Si, Jialin, J., Ren, Jiani

Journal: Mathematical Methods in the Applied Sciences

Year: 2025

Analytical model for corrugated rolling of composite plates considering the shear effect

Author: Y., Liu, Yuanming, J., Su, Jun, D., He, Dongping, … Z., Wang, Zhenhua, T., Wang, Tao

Journal: Journal of Manufacturing Processes

Year: 2025

Yong Li | Engineering | Best Researcher Award | 13407

Assoc Prof Dr Yong Li | Engineering | Best Researcher Award 

Assoc Prof Dr Yong Li, Fujian Police College, China

Dr. Yong Li is an Associate Professor in the Department of Public Security at Fujian Police College, China, with a strong academic background in Traffic Information Engineering and Control, holding both a Ph.D. and Master’s degree from Beijing Jiaotong University. His research focuses on intelligent transportation systems, electromagnetic tomography, and traffic accident imaging. He has led and participated in several nationally funded projects and published extensively in top-tier journals such as IEEE Transactions and Ultrasonics. Dr. Li also holds multiple patents related to traffic monitoring and sensing technologies, and serves as a thesis supervisor at Fuzhou University, contributing actively to academic mentorship and innovation in traffic safety and public security.

Profile

Orcid

🎓 Early Academic Pursuits

Dr. Yong Li’s academic journey showcases a strong foundation in engineering and traffic systems. He began his higher education at Beijing Union University, earning a Bachelor’s degree in Electrical Engineering and Automation between 2011 and 2015. This foundational training set the stage for his specialized focus in traffic and control systems.

Continuing on an ambitious academic path, he pursued both his Master’s (2015–2017) and Ph.D. (2017–2021) degrees in Traffic Information Engineering and Control at Beijing Jiaotong University, one of China’s top institutions in transportation sciences. His graduate studies equipped him with in-depth knowledge in traffic monitoring, signal processing, and system optimization—areas that would become central to his later research.

👨‍🏫 Professional Endeavors

After completing his doctorate, Dr. Li immediately immersed himself in both academic and applied research environments. He initially served as a Researcher at the Human-like Perception Research Center, Zhejiang Laboratory from June to September 2021, contributing to cutting-edge studies in perception technologies.

In November 2021, Dr. Li joined the Department of Public Security at Fujian Police College as a Lecturer, and was later promoted to Associate Professor. His role encompasses teaching, guiding student research, and leading scientific inquiries into intelligent transportation and traffic safety systems. He is also an External Master’s Thesis Supervisor at the College of Big Data and Computer Science, Fuzhou University since December 2021, further reflecting his academic mentorship roles.

🔬 Contributions and Research Focus

Dr. Li has an impressive record of participation in high-level scientific research. His primary focus lies in electromagnetic tomography, traffic accident imaging, and intelligent transportation systems. He has been a Principal Investigator for multiple projects, including:

  • “Large-scale Electromagnetic Tomography for Road Traffic Monitoring” (NSFC Project No. 62301159)

  • “Dual-plane Linear Array Electromagnetic Tomography for Traffic Accident Imaging”

  • “Urban Road Traffic Situation Assessment System” funded by Fujian’s Department of Finance

He is also a core participant in a significant ongoing NSFC project titled “Optimization of Delay Operation in Integrated Subway-Bus Networks in Metropolises”.

His work spans both theoretical modeling and applied systems, focusing on real-time data acquisition, traffic state estimation, and sensor technology for safety enhancement.

🏅 Accolades and Recognition

While explicit awards or honors are not detailed in the provided profile, Dr. Li’s consistent leadership in nationally funded research projects—particularly as a Principal Investigator on NSFC and provincial-level grants—is a strong indicator of peer recognition and institutional trust. His appointment as an Associate Professor within just a few years of completing his Ph.D. further underscores his rising prominence in the field.

🌍 Impact and Influence

Dr. Li’s work has direct societal implications, especially in improving urban traffic safety, accident response efficiency, and transportation infrastructure monitoring. His research contributes to China’s broader smart city initiatives and public security advancements, particularly in densely populated urban areas.

By bridging electrical engineering, traffic systems, and intelligent sensing, Dr. Li plays a pivotal role in making city transportation safer, more responsive, and more technologically advanced.

🚀 Legacy and Future Contributions

Looking forward, Dr. Li is poised to continue expanding the intersection of AI, electromagnetic sensing, and traffic control systems. His current NSFC and provincial projects are likely to yield further innovations in how we understand and manage traffic flow, detect anomalies, and respond to emergencies in real time.

With his expanding role as an educator and mentor, his influence will also be felt through the next generation of public safety and traffic engineering professionals in China. Dr. Li’s combination of academic rigor, inventive spirit, and societal relevance makes him a key figure in the evolution of smart transportation technologies.

📚Publications Top Notes

A Kalman Filtering Method on Time–Frequency Discrimination Analysis

ContributorsLi, Y.; Xiao, F.

Journal: ircuits, Systems, and Signal Processing

Year:  2025

Contributors: Li, Y.; Tao, X.; Sun, Y.
Journal: Electronics (Switzerland)
Year: 2024

Young Soo Yoon | Engineering | Best Researcher Award

Prof. Young Soo Yoon | Engineering | Best Researcher Award

Technology Transfer at Gachon University, South Korea.

Young Soo Yoon, PhD, is a distinguished researcher and professor at Gachon University’s Department of Environment and Energy Engineering. He earned his PhD from the Korea Advanced Institute of Science and Technology and has held significant roles including Research Fellow at the University of Minnesota and Principal Research Scientist at the Korea Institute of Science and Technology. His academic journey includes tenure as an associate professor at Konkuk University and Yonsei University. Dr. Yoon’s current research focuses on advanced materials for all-solid lithium-based secondary batteries and nuclear materials, particularly in cladding and MSR reactors. He brings expertise in thin film processes, measurement, and the synthesis of nano-tailored ceramic-metal composite powders for battery applications, including innovative ATF cladding processes using room temperature swaging methods.

Professional Profiles:

Education 🎓

He earned his Ph.D. from the Korea Advanced Institute of Science and Technology (KAIST), Korea, specializing in his research focus on all solid Li-based secondary battery materials and systems, nuclear materials such as cladding and MSR reactor.

Professional Experience

He has held significant positions in academia and research, starting as a Research Fellow at the Academic Staff at the University of Minnesota and later as a Principal Research Scientist at the Korea Institute of Science and Technology from 1997 to 2003. Transitioning into academia, he served as an Associate Professor at the Department of Advanced Technology Fusion of Konkuk University from 2004 to 2008, followed by a tenure at the Department of Materials Science and Engineering of Yonsei University from 2008 to 2012. Currently, he holds a professorship at the Department of Environment and Energy Engineering at Gachon University, where he continues to lead research in advanced materials for energy storage and nuclear applications.

Research Interest

His current research interests are focused on two primary areas. Firstly, he specializes in the development of advanced materials and systems for all-solid lithium-based secondary batteries, emphasizing innovations in electrode materials and solid electrolytes. Secondly, he explores nuclear materials, particularly in the areas of cladding materials and Molten Salt Reactor (MSR) technologies. With a wealth of experience in thin-film processes, nanostructured ceramics, and composite powder synthesis tailored for battery applications, his recent endeavors include pioneering advancements in the development of new cladding processes for nuclear reactors using room temperature swaging methods.

Research Skills

He possesses matured experience in various domains, including thin film processes and measurements, essential for precise fabrication and characterization in materials science. His expertise extends to the synthesis of nano-tailored ceramic-metal composite powders, particularly for electrodes and solid electrolytes in lithium-based secondary battery systems. His current focus includes pioneering new processes for Advanced Thin Film (ATF) cladding using innovative room temperature swaging methods, aimed at enhancing the safety and efficiency of nuclear materials. These skills underline his proficiency in advancing technologies crucial for energy storage solutions and nuclear reactor safety.

Publications

  1. Corrigendum to “Fabrication and characteristics of Li2TiO3 pebbles manufactured by using powder injection molding (PIM) process”
    • Authors: Park, Y.A., Park, Y.-H., Ahn, M.-Y., Yoon, Y.S.
    • Journal: Journal of Nuclear Materials, 2024, 598, 155165
  2. Fabrication and characteristics of Li2TiO3 pebbles manufactured by using powder injection molding (PIM) process
    • Authors: Park, Y.A., Park, Y.-H., Ahn, M.-Y., Yoon, Y.S.
    • Journal: Journal of Nuclear Materials, 2024, 597, 155140
  3. Selective etching-induced surface modifications of FeCrAl alloy bipolar plates: Mechanisms for enhanced corrosion resistance and hydrophobicity
    • Authors: Kang, H.E., Kim, S.H., Choi, J.-H., Kim, D.-J., Yoon, Y.S.
    • Journal: Chemical Engineering Journal, 2024, 493, 152409
  4. Corrigendum to “Li4SiO4 slurry conditions and sintering temperature for fabricating Li4SiO4 pebbles as tritium breeder for nuclear-fusion reactors”
    • Authors: Park, Y.A., Yoo, J.W., Park, Y.-H., Yoon, Y.S.
    • Journal: Nuclear Engineering and Technology, 2024, 56(5), 1941
  5. Enhanced Durability and Catalytic Performance of Pt–SnO2/Multi-Walled Carbon Nanotube with Shifted d-Band Center for Proton-Exchange Membrane Fuel Cells
    • Authors: Min, H., Choi, J.-H., Kang, H.E., Kim, D.-J., Yoon, Y.S.
    • Journal: Small Structures, 2024, 5(3), 2300407
    • Citations: 3
  6. Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of Si-based composite anodes for lithium-ion batteries
    • Authors: Kang, H.E., Ko, J., Song, S.G., Yoon, Y.S.
    • Journal: Carbon, 2024, 219, 118800
    • Citations: 2
  7. Characterization of CrAl coating on stainless steel bipolar plates for polymer electrolyte membrane fuel cells
    • Authors: Kang, H.E., Choi, J.-H., Lee, U., Kim, H.-G., Yoon, Y.S.
    • Journal: International Journal of Hydrogen Energy, 2024, 51, 1208–1226
    • Citations: 6
  8. Effect of ball milling energy and carbon content on electrochemical properties of FeF3/acetylene black composites for high-capacity thermal battery
    • Authors: Park, S.-H., Kim, S.H., Cheong, H.-W., Yoon, Y.S.
    • Journal: Ceramics International, 2024 (Article in Press)
  9. Corrigendum: Enhanced electrochemical properties of catalyst by phosphorous addition for direct urea fuel cell
    • Authors: Lee, U., Lee, Y.N., Yoon, Y.S.
    • Journal: Frontiers in Chemistry, 2024, 12, 1400748
  10. Hierarchical PtCuMnP Nanoalloy for Efficient Hydrogen Evolution and Methanol Oxidation
    • Authors: Basumatary, P., Choi, J.-H., Konwar, D., Han, B., Yoon, Y.S.
    • Journal: Small Methods, 2024 (Article in Press)