Size Ai | Engineering | Research Excellence Award

Mr. Size Ai | Engineering | Research Excellence Award 

Harbin Institute of Technology | China

Dr. Size Ai, currently a PhD researcher at the Harbin Institute of Technology, is an emerging scholar in the field of mechanical metamaterials and advanced structural design. Holding a PhD in Mechanics from Harbin Institute of Technology, Dr. Ai has developed strong expertise in the design, modeling, and steady-state analysis of mechanical metamaterials, focusing particularly on negative stiffness structures, multi-stable metastructures, and pneumatic actuators with tunable mechanical responses. His academic journey reflects a commitment to high-quality research, having published three SCI-indexed papers in top-tier JCR Q1 journals such as Thin-Walled Structures and Engineering Structures. His works include: “Analysis of Negative Stiffness Structures with B-spline Curved Beams” (Thin-Walled Structures, 2024), “Design and Analysis of an Origami-Embedded Multi-Stable Metastructure with Shape Reconfiguration” (Engineering Structures, 2025), and “Deep Learning-Based Structural Design and Mechanical Properties Analysis of Pneumatic Actuators with Tunable Multistability” (Thin-Walled Structures, 2025). These publications highlight Dr. Ai’s ability to integrate theoretical modeling, simulation optimization, deep learning techniques, and experimental validation to solve complex challenges in structural mechanics. He has contributed significantly to ongoing national research through his involvement in the National Natural Science Foundation of China project (Grant No. 12372041), which further demonstrates his active engagement in advancing scientific knowledge. One of Dr. Ai’s major contributions includes developing a configuration parameterization method based on B-spline curves to customize negative stiffness characteristics in metamaterials. Additionally, he proposed a steady-state switching strategy using reconfigurable energy barrier elements, enabling precise control over multi-stability and shape transformation in engineered structures. His work successfully demonstrates, through combined theory, simulations, and experiments, the feasibility of programmable mechanical behavior after forming—an advancement with promising applications in soft robotics, adaptive structures, vibration isolation, and smart materials. Dr. Ai’s research continues to attract academic attention, with citations indexed in the Web of Science database. He maintains a strong ethical commitment to research integrity, with no consultancy projects, patents, or books yet undertaken. While he currently holds no editorial appointments, professional memberships, or formal collaborations, his research trajectory shows excellence, independence, and innovation, positioning him as a competitive candidate for the Research Excellence Award. Dr. Ai affirms that all submitted information is accurate, verifiable, and supported by relevant research links, including: 10.1016/j.tws.2025.114287 and 10.1016/j.tws.2023.111418. He fully agrees to the terms, policies, and responsibilities associated with this award nomination and submits this application with the highest level of integrity.

Profile: Scopus

Featured Publications

Ai, S., Xie, Z., & Wei, J. (2025, November). Deep learning-based structural design and mechanical properties analysis of pneumatic actuators with tunable multistability.

Ai, S., Hou, S., Wei, J., & Xie, Z. (2025, October). Design and analysis of an origami-embedded multi-stable metastructure with shape reconfiguration.

Hou, S., Wei, J., Ai, S., & Tan, H. F. (2025, March). Broadband nonlinear vibration isolation for a friction dynamic system via quasi-zero stiffness isolator.

Bian, S., Ai, S., Wei, J., & Qingxiang, J. (2025, March). Structural design and performance analysis of large inflatable solar membrane reflector.

Ai, S., Wei, J., Xie, Z., & Tan, H. F. (2023, November). Analysis of negative stiffness structures with B-spline curved beams.

Tiezhen Ren | Advanced Materials Engineering | Research Excellence Award

Prof. Tiezhen Ren | Advanced Materials Engineering | Research Excellence Award

Xinjiang university | China

Prof. Dr. Tie-Zhen Ren is a distinguished Professor at the School of Chemical Engineering, Xinjiang University, China. She obtained her Ph.D. in Inorganic Materials Chemistry from the University of Namur (FUNDP), Belgium, where she completed a thesis on hierarchically nanoporous functional materials under the supervision of Prof. Bao-Lian Su. Prior to her doctorate, she studied Polymer Engineering at Tianjin Institute of Technology and later pursued graduate studies in Plant Protection at Anhui Agricultural University. Her academic career includes serving as a Professor at Hebei University of Technology (2007–2021), conducting postdoctoral research at Stockholm University in Sweden, and working as a visiting researcher at the City College of New York. Prof. Ren’s research focuses on the synthesis and characterization of nanostructured materials, mesoporous silica and metal oxide systems, photocatalysis, environmental materials, crystalline porous germanium oxides, catalyst development, and biomass-derived functional materials. She has extensive experience with advanced characterization techniques such as TEM, SEM-EDX, XRD, FT-IR, and electrochemical systems, and actively teaches courses such as General Chemistry, Chemical Engineering Principles, Catalysis, and Technical English. Prof. Ren has been the recipient of numerous prestigious honors, including the China National Scholarship for Outstanding Self-Financed Students Abroad, the Tianchi Talent Leader Award, and the Tianjin Natural Science Award. She has led multiple national and international research projects funded by the National Natural Science Foundation of China, Ministry of Education, and Xinjiang Autonomous Region, focusing on photocatalysis, nanocatalyst design, biomass valorization, and environmental remediation. She has authored and co-authored more than 80 peer-reviewed scientific publications across high-impact journals and continues to contribute to research in sustainable chemistry, catalysis, and materials science. She is fluent in English and Chinese and has basic proficiency in French.

Profiles: Scopus | Orcid

Featured Publications

Huang, S., Zhang, H., Zhang, T., Li, C., Ren, T., & He, Z. (2025). High‐efficiency exfoliation of atomically‐thin non‐Van der Waals quasicrystal nanosheets with enhanced electrocatalytic oxygen evolution reaction performance. Small Methods. https://doi.org/10.1002/smtd.202501162


Song, Z.-H., Muhammad, I., Ren, T.-Z., Abulizi, A., Okitsu, K., Li, H.-R., & Zhang, X.-J. (2025, March 27). Preparation of Al₂O₃ nanoparticles via fluidized roasting and their application in the pyrolysis of spent mulching film for hydrocarbon production. ACS Sustainable Resource Management. https://doi.org/10.1021/acssusresmgt.4c00436


Han, J., Sun, L., Ulbricht, M., Fischer, L., Zhang, G., Gao, W., Lv, L., Ren, T., Liu, X., & Ren, Z. (2025). Sulfite enhanced permanganate/Fe(II) moderate oxidation coagulation for the treatment of algae-laden water: Performance and mechanisms. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2024.159084


Fu, H., Bai, H., Abulizi, A., Okitsu, K., Maeda, Y., Ren, T., & Wang, S. (2024). Surfactant-enhanced ZnOₓ/CaO catalytic activity for ultrasound-assisted biodiesel production from waste cooking oil. Reaction Chemistry & Engineering. https://doi.org/10.1039/D3RE00306J


Cui, M.-J., Li, S.-S., Ren, T., Abulizi, A., & Nulahong, A.-S. (2024). Boosting BaTi₄O₉ photocatalytic H₂ evolution activity by functionalized CuNi alloy. Journal of Photochemistry and Photobiology A: Chemistry. https://doi.org/10.1016/j.jphotochem.2024.115834


Cui, M.-J., Muhammad, I., Feng, J., & Ren, T. (2024). Isopropanol assisted preparation of α–Al₂O₃ nanoparticles and its surface charge investigation. Solid State Sciences. https://doi.org/10.1016/j.solidstatesciences.2024.107706

Sedighe Mirbolouk | Engineering | Editorial Board Member

Dr. Sedighe Mirbolouk | Engineering | Editorial Board Member 

Iran National Science Foundation | Iran

Dr. Sedighe Mirbolouk is a dedicated postdoctoral researcher and advanced machine learning specialist with strong expertise in communication systems, data science, and artificial intelligence. She is affiliated with the Iran National Science Foundation and has built a diverse research portfolio spanning deep learning, wireless communication optimization, image processing, and intelligent sensing systems. Her technical proficiency covers a wide spectrum of tools and programming environments, including Python, MATLAB, LATEX, and advanced libraries such as TensorFlow, PyTorch, Scikit-learn, NumPy, SciPy, Pandas, and Matplotlib. With a strong theoretical foundation in data telecommunication networks, convex optimization, communication theory, and signal and image processing, she integrates computational intelligence with modern communication challenges. In her role as a Postdoctoral Researcher (2024–2025) at the Iran National Science Foundation, Dr. Mirbolouk focuses on cutting-edge topics in graph learning and federated learning, particularly designing machine learning approaches for predictive beamforming in Reconfigurable Intelligent Surface (RIS)-aided Integrated Sensing and Communication (ISAC) systems. Her work aims to improve efficiency, adaptability, and intelligence in next-generation wireless communication networks. Previously, she served as a Visiting Researcher (2022) at the University of Oulu in Finland, where she explored advanced deep reinforcement learning methods to enhance ISAC designs. These research experiences have positioned her at the frontier of combining AI with communication technologies. During her doctoral studies at the University of Urmia (2018–2021), Dr. Mirbolouk contributed significantly to satellite–UAV cooperative network optimization. She developed innovative solutions involving UAV selection and power allocation for CoMP-NOMA transmissions, introducing both Lagrangian and heuristic algorithms that advanced energy-efficient communication frameworks. Alongside communications research, she proposed image processing solutions such as fuzzy histogram weighting methods and contrast enhancement techniques. Her academic involvement includes teaching core engineering subjects—Digital Communication, Probability and Statistics, and Signals and Systems—and assisting courses on Stochastic Processes and Digital Signal Processing. Her work at the National Elite Foundation (2020–2022) expanded her portfolio into biomedical machine learning applications, where she designed systems for automatic breast cancer detection using histopathology images and cardiac arrhythmia recognition using ECG signals through deep learning approaches. Dr. Mirbolouk holds a Ph.D. in Electrical Engineering, with earlier B.Sc. and M.Sc. degrees from the University of Guilan, where she studied SAR radar Doppler ambiguity for moving targets. Her scholarly contributions include high-impact publications in journals such as IEEE Transactions on Vehicular Technology, Physical Communication, and Multimedia Tools and Applications. Collectively, her research reflects an outstanding integration of machine learning, optimization, sensing, and communication technologies.

Profile: Google Scholar

Featured Publications

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Ali, S. (2022). Relay selection and power allocation for energy efficiency maximization in hybrid satellite-UAV networks with CoMP-NOMA transmission. IEEE Transactions on Vehicular Technology, 71(5), 5087–5100.

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Choukali, M. A. (2021). A fuzzy histogram weighting method for efficient image contrast enhancement. Multimedia Tools and Applications, 80(2), 2221–2241.

Mirbolouk, S., Choukali, M. A., Valizadeh, M., & Amirani, M. C. (2020). Relay selection for CoMP-NOMA transmission in satellite and UAV cooperative networks. 2020 28th Iranian Conference on Electrical Engineering (ICEE), 1–5.

Choukali, M. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2023). A desired histogram estimation accompanied with an exact histogram matching method for image contrast enhancement. Multimedia Tools and Applications, 82(18), 28345–28365.

Hussein, A. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2025). Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework. Scientific Reports, 15(1), 25071.

Choukali, M. A., Mirbolouk, S., Valizadeh, M., & Amirani, M. C. (2024). Deep contextual bandits-based energy-efficient beamforming for integrated sensing and communication. Physical Communication, 68, 102576.

Abu Farzan Mitul | Engineering | Best Researcher Award

Dr. Abu Farzan Mitul | Engineering | Best Researcher Award

Leidos | United States

Dr. Abu Farzan Mitul is an accomplished researcher and educator specializing in opto-electronic device fabrication, fiber optic sensing technologies, and nanostructured thin-film materials. His research bridges the intersection of photonics, materials science, and advanced sensing systems — contributing to innovations that enhance environmental monitoring, industrial automation, and biomedical diagnostics. Dr. Mitul earned his Ph.D. in Electrical and Computer Engineering from the University of Texas at El Paso (UTEP), USA, where he designed and developed advanced fiber Bragg grating sensors and thin-film photonic devices for multi-parameter sensing applications. His earlier academic training includes a B.Sc. and M.Sc. in Applied Physics, Electronics, and Communication Engineering from the University of Dhaka, Bangladesh. Throughout his career, Dr. Mitul has collaborated with leading U.S. research institutions and agencies, including the Department of Energy (DOE), Department of Defense (DoD), and NASA, focusing on next-generation optoelectronic and energy-efficient sensing systems. His extensive publication record spans high-impact journals and international conferences in photonics, sensor technology, and materials characterization. In addition to his research, Dr. Mitul has served as a faculty member and laboratory instructor, mentoring undergraduate and graduate students in electronics, photonics, and experimental physics. He is passionate about advancing interdisciplinary research in fiber optic sensing, MEMS/NEMS devices, photonic integrated systems, and nanotechnology-driven device engineering. Dr. Mitul continues to explore innovative pathways toward miniaturized, high-sensitivity photonic systems with applications across environmental, aerospace, and biomedical fields — aligning cutting-edge materials research with sustainable technological development.

Profiles: Orcid | Google Scholar | Linkedin

Featured Publications

Adhikari, N., Dubey, A., Khatiwada, D., Mitul, A. F., Wang, Q., Venkatesan, S., & Qiao, Q. (2015). Interfacial study to suppress charge carrier recombination for high efficiency perovskite solar cells. ACS Applied Materials & Interfaces, 7(48), 26445–26454. https://doi.org/10.1021/acsami.5b08343

Rana, G. M. S. M., Khan, A. A. M., Hoque, M. N., & Mitul, A. F. (2013, December). Design and implementation of a GSM based remote home security and appliance control system. In 2013 2nd International Conference on Advances in Electrical Engineering (ICAEE) (pp. 291–295). IEEE. https://doi.org/10.1109/ICAEE.2013.6750340

Khatiwada, D., Venkatesan, S., Adhikari, N., Dubey, A., Mitul, A. F., Mohammad, L., … & Qiao, Q. (2015). Efficient perovskite solar cells by temperature control in single and mixed halide precursor solutions and films. The Journal of Physical Chemistry C, 119(46), 25747–25753. https://doi.org/10.1021/acs.jpcc.5b08667

Mitul, A. F., Mohammad, L., Venkatesan, S., Adhikari, N., Sigdel, S., Wang, Q., … & Qiao, Q. (2015). Low temperature efficient interconnecting layer for tandem polymer solar cells. Nano Energy, 11, 56–63. https://doi.org/10.1016/j.nanoen.2014.10.030

Venkatesan, S., Ngo, E. C., Chen, Q., Dubey, A., Mohammad, L., Adhikari, N., … & Qiao, Q. (2014). Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage. Nanoscale, 6(12), 7093–7100. https://doi.org/10.1039/C4NR00606H

Islam, M. M., Rafi, F. H. M., Mitul, A. F., Ahmad, M., Rashid, M. A., & Malek, M. F. B. A. (2012, May). Development of a noninvasive continuous blood pressure measurement and monitoring system. In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 695–699). IEEE. https://doi.org/10.1109/ICIEV.2012.6317425

 

Mujahid Aziz | Engineering | Best Researcher Award

Prof. Mujahid Aziz | Engineering | Best Researcher Award

Cape Peninsula University of Technology | South Africa

Professor Mujahid Aziz is a distinguished academic and research leader serving as the Assistant Dean: Learning & Teaching in the Faculty of Engineering and the Built Environment (FEBE) at the Cape Peninsula University of Technology (CPUT) in South Africa. In this leadership role, he oversees and enhances academic excellence across eight departments within the faculty, which collectively serve nearly 10,000 students, including a growing cohort of postgraduate scholars. As a champion of academic transformation, Prof. Aziz is deeply committed to promoting innovative teaching practices, curriculum modernization, and student-centered learning within engineering education. His leadership is instrumental in aligning the faculty’s academic strategies with industry relevance, sustainability goals, and the national development agenda. With over 23 years of experience as an Associate Professor of Chemical Engineering, Prof. Aziz has established himself as a transformative educator, researcher, and mentor. His academic journey reflects a sustained dedication to advancing both the theoretical and practical dimensions of environmental and chemical engineering. Throughout his career, he has supervised numerous postgraduate students and contributed to the development of engineering curricula that integrate sustainability, innovation, and applied research. His pedagogical philosophy emphasizes experiential learning and the development of problem-solving skills essential for addressing real-world engineering challenges, particularly in water and environmental systems. As the Principal Investigator of the Environmental Engineering Research Group (EERG), Prof. Aziz leads multidisciplinary research focused on sustainable water and wastewater treatment technologies. His work is internationally recognized, with publications in high-impact journals such as Desalination, MDPI Membranes, MDPI Water, and Environmental Processes. Recent research endeavors have explored cutting-edge methods for biofouling mitigation in polyamide thin-film composite reverse osmosis membranes, particularly through polymer grafting and nanoparticle coating. These innovations are pivotal for improving the treatment of municipal bioreactor secondary effluent and enhancing the efficiency and longevity of membrane systems used in desalination and wastewater reuse. Prof. Aziz’s research portfolio is characterized by a strong interdisciplinary approach that bridges materials science, chemical process design, and environmental sustainability. His areas of specialization encompass membrane technology, wastewater reuse, electrochemical and adsorption processes, brine management, and zero liquid discharge (ZLD) systems. His work addresses critical environmental challenges associated with water scarcity and industrial pollution, offering viable pathways for circular water economies and resource recovery. His pursuit of innovation in micropollutant removal, membrane fouling control, and electro-oxidation for water reuse reflects his vision of achieving sustainable and intelligent environmental engineering solutions. Through his academic leadership, pioneering research, and commitment to mentorship, Prof. Mujahid Aziz continues to make a profound impact on the future of engineering education and sustainable water technology development in South Africa and beyond.

Profiles: Orcid | Google Scholar

Featured Publications

Aziz, M., & Ojumu, T. (2020). Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes, 10(3), 37. https://doi.org/10.3390/membranes10030037

Aziz, M., & Kasongo, G. (2021). The removal of selected inorganics from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application: A pilot-scale study. Membranes, 11(2), 1–14. https://doi.org/10.3390/membranes11020104

Myburgh, D. P., Aziz, M., Roman, F., Jardim, J., & Chakawa, S. (2019). Removal of COD from industrial biodiesel wastewater using an integrated process: Electrochemical oxidation with IrO₂–Ta₂O₅/Ti anodes and chitosan powder. Environmental Processes, 6(4), 819–840. https://doi.org/10.1007/s40710-019-00393-5

Kasongo, G., Steenberg, C., Morris, B., Kapenda, G., Jacobs, N., & Aziz, M. (2019). Surface grafting of polyvinyl alcohol (PVA) cross-linked with glutaraldehyde (GA) to improve resistance to fouling of aromatic polyamide thin film composite reverse osmosis membranes. Water Practice & Technology, 14(3), 614–624. https://doi.org/10.2166/wpt.2019.042

Chakawa, S., & Aziz, M. (2021). Investigating the result of current density, temperature, and electrolyte concentration on COD subtraction of petroleum refinery wastewater using response surface methodology. Water, 13(6), 835. https://doi.org/10.3390/w13060835

Aziz, M., & Kasongo, G. (2019). Scaling prevention of thin film composite polyamide reverse osmosis membranes by Zn ions. Desalination, 464, 76–83. https://doi.org/10.1016/j.desal.2019.04.006

Ning Chen | Engineering | Best Researcher Award | 13558

Mr. Ning Chen | Engineering | Best Researcher Award

Mr. Ning Chen, Shandong University of Science and Technology, China

Mr. Ning Chen, Lecturer at Shandong University of Science and Technology, China, is an emerging researcher in high-precision mechatronic systems. With a Ph.D. in mechanical engineering and prior industry experience, he has developed innovative piezoelectric galvanometers, stiffness-adjustable servo systems, and micro-nano motion platforms. His work is shaping the future of laser positioning, scanning, and ultra-precision control technologies. Backed by prestigious national and provincial research grants, Mr. Chen exemplifies academic excellence and practical innovation in mechanical and precision engineering.

Author Profile

Orcid

Education

Dr. Weijian Wang embarked on his academic journey with a solid foundation in chemical sciences. He earned his Bachelor’s degree in Chemical Engineering and Technology from the China University of Petroleum (East China)—an institution known for producing talent in energy and chemical sectors. His academic excellence and growing passion for applied chemical research led him to pursue a Master’s degree in Chemical Engineering at the China University of Mining and Technology, where he deepened his understanding of reaction engineering, process modeling, and advanced materials.

Eager to contribute to cutting-edge innovation in the energy sector, Dr. Wang pursued his Ph.D. in Chemical Technology at the Research Institute of Petroleum Processing (RIPP), Sinopec, one of China’s leading industrial research institutions. His doctoral training provided him with hands-on experience in industrial-scale research, advanced materials development, and interdisciplinary collaboration. To further strengthen his academic and research profile, Dr. Wang completed a postdoctoral fellowship at Zhejiang University, where he explored emerging materials and device applications, preparing him for a career at the intersection of academia and applied science.

Experience

In 2022, Dr. Wang joined Beibu Gulf University as an Associate Professor, where he has since led a promising research group focusing on halide perovskite materials. As a faculty member, he has embraced both teaching and research, mentoring students while pursuing innovative solutions to modern energy and optoelectronic challenges.

One of his key professional milestones includes leading the Guangxi Science and Technology Major Program (GuikeAA23062016). This ambitious research initiative demonstrates his leadership and technical capability in managing multi-disciplinary projects aligned with regional and national scientific goals. With no industry consultancies yet, Dr. Wang remains fully invested in academic research, pushing boundaries in materials science through both simulations and experimental designs.

Research Focus

Dr. Weijian Wang’s research is centered on the green synthesis and application of halide perovskite materials, a rapidly evolving class of compounds celebrated for their extraordinary optoelectronic properties. These materials are particularly promising in fields such as solar energy conversion, light-emitting diodes (LEDs), and medical bioimaging. At the heart of Dr. Wang’s innovation is the drive for sustainability. He has developed eco-friendly synthesis techniques that minimize environmental harm while maintaining material performance, advancing the goal of sustainable science. 🌱

In the field of perovskite solar cells, Dr. Wang employs simulation-assisted design methodologies to enhance energy conversion efficiency. His designs have led to devices with superior performance characteristics, addressing one of the key challenges in renewable energy technology. 🌞 Beyond energy, his research also extends to optoelectronic devices, including perovskite-based LEDs and imaging systems with applications in healthcare diagnostics and bioimaging. 💡

Dr. Wang’s robust scientific output includes 11 peer-reviewed publications in internationally recognized SCI-indexed journals, with eight authored as first or corresponding author. Additionally, he has secured 15 authorized invention patents as the primary inventor, underscoring his capacity to translate theoretical research into tangible technological innovations.

Award and Recognition

Despite being in the early stages of his academic journey, Dr. Wang has already built a strong research profile distinguished by originality, technical rigor, and innovation. His contributions have earned him 11 published articles in high-impact SCI-indexed journals, demonstrating both quality and consistency in scientific communication. 📚

Dr. Wang also holds 15 authorized invention patents, a notable achievement that reflects his focus on applied research and technology transfer. 🧾 These patents not only reinforce his expertise in halide perovskite materials but also highlight his dedication to practical solutions for global energy and environmental challenges.

Further elevating his academic standing, Dr. Wang currently leads a major government-funded research program, indicating trust in his leadership and vision at the national level. 💼 His H-index of 5 signifies an increasing impact within the scholarly community, with a trajectory that suggests sustained and growing influence in the years to come.

Although he does not yet hold editorial roles or memberships in professional societies, his impressive publication and patent record mark him as a promising figure in materials science. His career is on a path toward broader recognition, leadership roles, and continued contributions to the scientific community.

Publications

📖 A Semi-analytical Method for Vibro-Acoustic Properties of Functionally Graded Porous Piezoelectric Annular Plates with Cavity – Journal of Vibration Engineering and Technologies (2025).
📖 Enhancing the motion performance of 3-DOF micro/nano-manipulators facing thermo-piezoelectric-mechanical coupling effects – Sensors and Actuators A Physical (2025)
📖 Robust control of uncertain asymmetric hysteretic nonlinear systems with adaptive neural network disturbance observer – Applied Soft Computing (2024)
📖 Low thermal budget lead zirconate titanate thick films integrated on Si for piezo-MEMS applications – Microelectronic Engineering (2020)

 

 

 

Jun Liu | Engineering | Best Researcher Award | 13444

Assoc. Prof. Dr. Jun Liu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jun Liu, North China University of Water Resources and Electric Power, China

Assoc. Prof. Dr. Jun Liu is an Assistant Professor and Master’s Supervisor in the Department of Thermal Engineering at North China University of Water Resources and Electric Power. He holds a Ph.D. in Engineering Thermophysics from Zhejiang University and specializes in CO₂ capture and utilization, solid waste treatment, multiphase flow and combustion simulation, and pollutant removal technologies. Dr. Liu has led multiple provincial-level research projects and published extensively in SCI and EI-indexed journals. His teaching focuses on boiler principles, operations, and clean combustion technologies.

Profile

Scopus

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Jun Liu began his academic journey with a solid foundation in engineering and technology. In 2005, he enrolled at Shanxi University, where he pursued a Bachelor’s degree in Automation under the Department of Information Engineering. This initial exposure to systems control and engineering principles cultivated his interest in energy systems and laid the groundwork for his future endeavors in thermal engineering and environmental research. In 2009, he took a decisive step toward specializing in energy technologies by pursuing a Master’s degree in Fluid Machinery and Engineering at the School of Electric Power, North China University of Water Resources and Electric Power. Here, he honed his understanding of energy conversion systems, power plant operations, and machinery critical to thermal power generation. His passion for research and academic excellence led him to earn a Ph.D. in Engineering Thermophysics at the prestigious Zhejiang University from 2012 to 2016. This phase of his education sharpened his expertise in combustion processes, thermodynamic systems, and pollutant control, which later became key pillars of his professional and research identity.

💼 Professional Endeavors

Following the completion of his doctorate, Dr. Liu began his professional career at the Xi’an Thermal Power Research Institute Co., Ltd., Suzhou Branch in 2016. In this applied research environment, he gained hands-on experience in industrial-scale power systems and thermal processes, translating academic knowledge into practical solutions. In April 2019, Dr. Liu returned to academia, joining the College of Energy and Power Engineering at the North China University of Water Resources and Electric Power as an Assistant Professor and Master’s Supervisor. His return marked a blend of academic vigor and industrial insight, enriching the university’s teaching and research capabilities.

🔬 Contributions and Research Focus

Dr. Liu’s research spans several crucial areas within energy and environmental engineering:

  1. CO₂ Capture and Resource Utilization – He leads studies on innovative adsorbent materials and absorption technologies aimed at mitigating greenhouse gas emissions.

  2. Solid Waste Treatment – His work on incinerator systems and waste-to-energy solutions contributes to sustainable waste management practices.

  3. Multiphase Flow and Combustion Simulation – By modeling combustion processes, he aims to optimize energy efficiency and reduce emissions.

  4. Pollutant Removal – His research explores integrated technologies for removing NOx, SOx, and other harmful emissions from combustion systems.

He has presided over several key provincial research projects, including studies on CO₂ adsorption kinetics, microencapsulated absorbents, and waste heat boiler performance. His work reflects a deep commitment

🏅 Accolades and Recognition

to both scientific innovation and environmental sustainability.

Dr. Liu’s contributions have been recognized with several prestigious awards:

  • 🥇 First Prize, Boiler Science and Technology Award (2023), for his contributions to power generation technology for large mechanical grates.

  • 🥈 Second Prize, Henan Provincial Science and Technology Progress Award (2022), for his role in developing low-temperature waste heat recovery systems.

  • 🏆 First Prize, Excellent Scientific and Technological Paper Award by the Henan Province Office of Education (2021).

These accolades underscore his impactful research and its relevance to both academia and industry.

🌍 Impact and Influence

Dr. Liu has authored multiple peer-reviewed papers in SCI and EI indexed journals, reflecting the scientific merit and practical application of his research. His publication in Waste Management on flue gas recirculation and NOx emission control is especially noteworthy in the context of sustainable waste-to-energy practices. Moreover, his work influences not only fellow researchers but also policymakers and industry professionals seeking advanced environmental solutions. As a committed educator, he imparts knowledge through courses like Boiler Principle, Boiler Operation, and Clean Combustion and Pollutant Control. His teaching integrates the latest research findings, ensuring that students are prepared for real-world energy challenges.

🌱 Legacy and Future Contributions

Looking ahead, Dr. Liu is poised to continue making substantial contributions to the fields of clean energy and environmental protection. His interdisciplinary approach, combining engineering thermophysics, environmental science, and applied technology, equips him to tackle emerging challenges such as carbon neutrality, smart power systems, and circular economy strategies for waste management. He is also likely to mentor the next generation of researchers, fostering innovation through student supervision, collaborative projects, and academic outreach. As climate concerns and energy demands rise globally, Dr. Liu’s expertise will remain critical in shaping sustainable technological pathways for the future.

📄 Publication Top Notes

Research Progress on the Occurrence Characteristics of AAEM Elements in Zhundong Coal

Author: W., Wang, Wei, X., Guo, Xinwei, X., Wu, Xiaojiang, … C., Fan, Cunjiang, L., Zhuo, Lanting

Journal: Dongli Gongcheng Xuebao /Journal of Chinese Society of Power Engineering

Year: 2025

The effect of air distribution on the characteristics of waste combustion and NO generation in a grate incinerator

Author:  J., Liu, Jun, Z., Xie, Zheng, B., Guo, Bingyu, … L., Bai, Li, J., Long, Jisheng

Journal: Journal of the Energy Institute .,

Year: 2024