Size Ai | Engineering | Research Excellence Award

Mr. Size Ai | Engineering | Research Excellence Award 

Harbin Institute of Technology | China

Dr. Size Ai, currently a PhD researcher at the Harbin Institute of Technology, is an emerging scholar in the field of mechanical metamaterials and advanced structural design. Holding a PhD in Mechanics from Harbin Institute of Technology, Dr. Ai has developed strong expertise in the design, modeling, and steady-state analysis of mechanical metamaterials, focusing particularly on negative stiffness structures, multi-stable metastructures, and pneumatic actuators with tunable mechanical responses. His academic journey reflects a commitment to high-quality research, having published three SCI-indexed papers in top-tier JCR Q1 journals such as Thin-Walled Structures and Engineering Structures. His works include: “Analysis of Negative Stiffness Structures with B-spline Curved Beams” (Thin-Walled Structures, 2024), “Design and Analysis of an Origami-Embedded Multi-Stable Metastructure with Shape Reconfiguration” (Engineering Structures, 2025), and “Deep Learning-Based Structural Design and Mechanical Properties Analysis of Pneumatic Actuators with Tunable Multistability” (Thin-Walled Structures, 2025). These publications highlight Dr. Ai’s ability to integrate theoretical modeling, simulation optimization, deep learning techniques, and experimental validation to solve complex challenges in structural mechanics. He has contributed significantly to ongoing national research through his involvement in the National Natural Science Foundation of China project (Grant No. 12372041), which further demonstrates his active engagement in advancing scientific knowledge. One of Dr. Ai’s major contributions includes developing a configuration parameterization method based on B-spline curves to customize negative stiffness characteristics in metamaterials. Additionally, he proposed a steady-state switching strategy using reconfigurable energy barrier elements, enabling precise control over multi-stability and shape transformation in engineered structures. His work successfully demonstrates, through combined theory, simulations, and experiments, the feasibility of programmable mechanical behavior after forming—an advancement with promising applications in soft robotics, adaptive structures, vibration isolation, and smart materials. Dr. Ai’s research continues to attract academic attention, with citations indexed in the Web of Science database. He maintains a strong ethical commitment to research integrity, with no consultancy projects, patents, or books yet undertaken. While he currently holds no editorial appointments, professional memberships, or formal collaborations, his research trajectory shows excellence, independence, and innovation, positioning him as a competitive candidate for the Research Excellence Award. Dr. Ai affirms that all submitted information is accurate, verifiable, and supported by relevant research links, including: 10.1016/j.tws.2025.114287 and 10.1016/j.tws.2023.111418. He fully agrees to the terms, policies, and responsibilities associated with this award nomination and submits this application with the highest level of integrity.

Profile: Scopus

Featured Publications

Ai, S., Xie, Z., & Wei, J. (2025, November). Deep learning-based structural design and mechanical properties analysis of pneumatic actuators with tunable multistability.

Ai, S., Hou, S., Wei, J., & Xie, Z. (2025, October). Design and analysis of an origami-embedded multi-stable metastructure with shape reconfiguration.

Hou, S., Wei, J., Ai, S., & Tan, H. F. (2025, March). Broadband nonlinear vibration isolation for a friction dynamic system via quasi-zero stiffness isolator.

Bian, S., Ai, S., Wei, J., & Qingxiang, J. (2025, March). Structural design and performance analysis of large inflatable solar membrane reflector.

Ai, S., Wei, J., Xie, Z., & Tan, H. F. (2023, November). Analysis of negative stiffness structures with B-spline curved beams.

Mohammad Silani | Engineering | Editorial Board Member

Assoc Prof Dr. Mohammad Silani | Engineering | Editorial Board Member

Isfahan University of Technology | Iran

Dr. Mohammad Silani is an accomplished Associate Professor in the Department of Mechanical Engineering at Isfahan University of Technology (IUT), Iran, where he currently serves as the Head of International Scientific Cooperation. His academic career reflects a continuous trajectory of excellence in multiscale modeling, computational mechanics, and advanced materials research. Since joining IUT as an Assistant Professor in 2015, Dr. Silani has made significant contributions in micromechanics, multiscale simulation, fracture mechanics, and computational materials science. From 2022 to 2023, he was awarded the prestigious MSCA Seal of Excellence Fellowship at the Free University of Bozen-Bolzano, Italy, where he advanced adaptive concurrent multiscale methods for wear modeling and developed coarse-grained molecular dynamics tools for fatigue crack propagation. His international research engagements also include visiting fellowships at the University of New South Wales in Australia, Qatar University, the National University of Singapore, and multiple research positions at Bauhaus University Weimar, Germany, where he contributed to the development of open-source multiscale finite element codes and advanced modeling techniques for nanocomposites. Dr. Silani earned all three of his degrees—B.Sc., M.Sc., and Ph.D.—from IUT, specializing in solid mechanics, fracture mechanics, vibrations, FEM, and multiscale analysis. He possesses strong programming expertise in Python, Fortran, MATLAB, and Abaqus scripting and has advanced proficiency in leading finite element software including Abaqus, ANSYS, and LS-DYNA. His research achievements include more than 2,400 citations with an H-index of 20, reflecting his impactful contributions to computational mechanics, phase-field modeling, stochastic analysis, XFEM, SBFEM, and machine-learning-assisted material design. He has supervised over 70 postgraduate students, taught a wide range of undergraduate and graduate courses, and reviewed for leading journals such as Materials & Design, International Journal of Fatigue, Composite Structures, and Scientific Reports. His extensive publication record includes high-impact works in Advanced Materials, International Journal of Fracture, Computational Mechanics, Nanotechnology, Acta Mechanica Sinica, and Journal of Mechanical Behavior of Biomedical Materials. Dr. Silani’s honors include the Distinguished Young Professor Award from Iran’s National Elites Foundation (2022, 2023), multiple national science grants, a DAAD Research Grant, and project funding from the German Research Foundation (DFG). His current research spans phase-field modeling of nanowires, fracture and wear simulations, machine learning for materials design, nano- and micro-scale damage analysis, bone tissue mechanics, and Industry 4.0-based mechanical monitoring. Dr. Silani maintains active collaborations with leading researchers worldwide, reinforcing his position as a distinguished scholar in computational mechanics and multiscale material modeling.

Profile: Google Scholar

Featured Publications

A computational library for multiscale modeling of material failure
Talebi, H., Silani, M., Bordas, S. P. A., Kerfriden, P., & Rabczuk, T. (2014). A computational library for multiscale modeling of material failure. Computational Mechanics, 53(5), 1047–1071.

Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions
Hamdia, K. M., Silani, M., Zhuang, X., He, P., & Rabczuk, T. (2017). Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 206(2), 215–227.

First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials
Mortazavi, B., Silani, M., Podryabinkin, E. V., Rabczuk, T., Zhuang, X., & Shapeev, A. V. (2021). First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials. Advanced Materials, 33(35), 2102807.

Sedighe Mirbolouk | Engineering | Editorial Board Member

Dr. Sedighe Mirbolouk | Engineering | Editorial Board Member 

Iran National Science Foundation | Iran

Dr. Sedighe Mirbolouk is a dedicated postdoctoral researcher and advanced machine learning specialist with strong expertise in communication systems, data science, and artificial intelligence. She is affiliated with the Iran National Science Foundation and has built a diverse research portfolio spanning deep learning, wireless communication optimization, image processing, and intelligent sensing systems. Her technical proficiency covers a wide spectrum of tools and programming environments, including Python, MATLAB, LATEX, and advanced libraries such as TensorFlow, PyTorch, Scikit-learn, NumPy, SciPy, Pandas, and Matplotlib. With a strong theoretical foundation in data telecommunication networks, convex optimization, communication theory, and signal and image processing, she integrates computational intelligence with modern communication challenges. In her role as a Postdoctoral Researcher (2024–2025) at the Iran National Science Foundation, Dr. Mirbolouk focuses on cutting-edge topics in graph learning and federated learning, particularly designing machine learning approaches for predictive beamforming in Reconfigurable Intelligent Surface (RIS)-aided Integrated Sensing and Communication (ISAC) systems. Her work aims to improve efficiency, adaptability, and intelligence in next-generation wireless communication networks. Previously, she served as a Visiting Researcher (2022) at the University of Oulu in Finland, where she explored advanced deep reinforcement learning methods to enhance ISAC designs. These research experiences have positioned her at the frontier of combining AI with communication technologies. During her doctoral studies at the University of Urmia (2018–2021), Dr. Mirbolouk contributed significantly to satellite–UAV cooperative network optimization. She developed innovative solutions involving UAV selection and power allocation for CoMP-NOMA transmissions, introducing both Lagrangian and heuristic algorithms that advanced energy-efficient communication frameworks. Alongside communications research, she proposed image processing solutions such as fuzzy histogram weighting methods and contrast enhancement techniques. Her academic involvement includes teaching core engineering subjects—Digital Communication, Probability and Statistics, and Signals and Systems—and assisting courses on Stochastic Processes and Digital Signal Processing. Her work at the National Elite Foundation (2020–2022) expanded her portfolio into biomedical machine learning applications, where she designed systems for automatic breast cancer detection using histopathology images and cardiac arrhythmia recognition using ECG signals through deep learning approaches. Dr. Mirbolouk holds a Ph.D. in Electrical Engineering, with earlier B.Sc. and M.Sc. degrees from the University of Guilan, where she studied SAR radar Doppler ambiguity for moving targets. Her scholarly contributions include high-impact publications in journals such as IEEE Transactions on Vehicular Technology, Physical Communication, and Multimedia Tools and Applications. Collectively, her research reflects an outstanding integration of machine learning, optimization, sensing, and communication technologies.

Profile: Google Scholar

Featured Publications

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Ali, S. (2022). Relay selection and power allocation for energy efficiency maximization in hybrid satellite-UAV networks with CoMP-NOMA transmission. IEEE Transactions on Vehicular Technology, 71(5), 5087–5100.

Mirbolouk, S., Valizadeh, M., Amirani, M. C., & Choukali, M. A. (2021). A fuzzy histogram weighting method for efficient image contrast enhancement. Multimedia Tools and Applications, 80(2), 2221–2241.

Mirbolouk, S., Choukali, M. A., Valizadeh, M., & Amirani, M. C. (2020). Relay selection for CoMP-NOMA transmission in satellite and UAV cooperative networks. 2020 28th Iranian Conference on Electrical Engineering (ICEE), 1–5.

Choukali, M. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2023). A desired histogram estimation accompanied with an exact histogram matching method for image contrast enhancement. Multimedia Tools and Applications, 82(18), 28345–28365.

Hussein, A. A., Valizadeh, M., Amirani, M. C., & Mirbolouk, S. (2025). Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework. Scientific Reports, 15(1), 25071.

Choukali, M. A., Mirbolouk, S., Valizadeh, M., & Amirani, M. C. (2024). Deep contextual bandits-based energy-efficient beamforming for integrated sensing and communication. Physical Communication, 68, 102576.

Yonas Gezahegn | Engineering | Best Researcher Award

Dr. Yonas Gezahegn | Engineering | Best Researcher Award

Nestle Purina/Washington State University | United States

Dr. Yonas A. Gezahegn is a distinguished research and development engineer specializing in thermal and food process engineering, with extensive expertise in microwave-assisted thermal sterilization and pasteurization, heat and mass transfer, biochemical engineering, and food safety. With over 15 years of academic and industry experience, Dr. Gezahegn has developed a strong reputation for integrating engineering principles with advanced experimental and computational methods to optimize food processing and thermal treatment technologies. His research bridges the gap between fundamental engineering science and industrial applications, ensuring both efficiency and safety in food production systems. Dr. Gezahegn’s academic training includes a PhD in Biological Systems Engineering (Food Engineering) from Washington State University, where he focused on optimization of microwave-assisted thermal sterilization and pasteurization processes using analytical models and computer simulations. His prior degrees include a Master’s in Chemical Engineering from Addis Ababa University, and a Bachelor’s in Food and Biochemical Technology from Bahir Dar University, where his research addressed critical challenges in oil and fat extraction, fermentation, and food quality assessment. Currently serving as R&D Process Engineer – Thermal Process Expert at Nestle Purina, Dr. Gezahegn leads projects on process improvement, thermal sterilization validation, and retort commissioning for low-acid and acidified food products. He has successfully managed large-scale research projects, including microwave-assisted thermal processing of breaded meats, temperature distribution studies, and process optimization for commercial food production. His work also encompasses pilot-plant scale-up, analytical characterization, and data-driven modeling to ensure precise control of thermal processing conditions. Dr. Gezahegn has published over 12 peer-reviewed journal articles in top-tier journals, including the Journal of Food Engineering, Current Research in Food Science, Innovative Food Science & Emerging Technologies, Food Science and Nutrition, and LWT – Food Science and Technology. His publications focus on microwave-assisted processing, dielectric properties of foods, thermal pasteurization optimization, and oil extraction technologies. Notably, his research has led to multiple patents, including a utility model for screw expeller-based shea butter extraction and pending patents on gluten-free pizza crust and crispy breaded food processes. His work has been widely cited in the food engineering and process optimization communities, highlighting his influence in both academic and industrial research. In addition to research, Dr. Gezahegn has contributed extensively to industry-academic collaborations, securing competitive grants such as the USDA-NIFA and WSU Hatch projects totaling over USD 4 million, and Ethiopian national projects on drying and fermentation of plant-based products. Dr. Gezahegn published 12+ peer-reviewed articles, 550 Citations and 10 H-index.  His projects integrate  analytical modeling, simulation, experimental validation, and process design to improve efficiency, safety, and nutritional quality in food production. Dr. Gezahegn has served as a reviewer for journals including Applied Food Research, Journal of Food Engineering, and the International Journal for Vitamin and Nutrition Research, reflecting his standing in the research community. His leadership extends to professional societies, including IFT, IMPI, SoFE, and ASABE, and he has held roles such as President of the Food Engineering Club and departmental representative in the Graduate and Professional Student Association. Overall, Dr. Gezahegn’s work demonstrates a sustained commitment to advancing food engineering, thermal process optimization, and industrial innovation, making significant contributions to improving food safety, process efficiency, and product quality. His research portfolio combines rigorous academic scholarship with practical applications, establishing him as a leading expert in thermal food processing and microwave-assisted sterilization technologies.

Profiles: Scopus | Orcid

Featured Publications

Gezahegn, Y., Tang, J., et al. (2024). Development and validation of engineering charts: Heating time and optimal salt content prediction for microwave assisted thermal sterilization. Journal of Food Engineering, 369, 111909. https://doi.org/10.1016/j.jfoodeng.2023.111909

Gezahegn, Y., Yoon-Ki, H., Tang, J., et al. (2023). Development and validation of analytical charts for microwave assisted thermal pasteurization of selected food products. Journal of Food Engineering, 349, 111434. https://doi.org/10.1016/j.jfoodeng.2023.111434

Zhou, X., Gezahegn, Y., et al. (2023). Theoretical reasons for rapid heating of vegetable oils by microwaves. Current Research in Food Science, 7, 100641. https://doi.org/10.1016/j.crfs.2023.100641

Gezahegn, Y., Tang, J., Sablani, S., et al. (2021). Dielectric properties of water relevant to microwave assisted thermal pasteurization and sterilization of packaged foods. Innovative Food Science & Emerging Technologies, 74, 102837. https://doi.org/10.1016/j.ifset.2021.102837

Gezahegn, Y., Emire, S., & Asfaw, S. (2016). Optimization of Shea (Vitellaria paradoxa) butter quality using screw expeller extraction. Food Science & Nutrition, 4(6), 840–847. https://doi.org/10.1002/fsn3.351

Gezahegn, Y., Emire, S., & Asfaw, S. (2016). Effect of processing factors on Shea (Vitellaria paradoxa) butter extraction. LWT – Food Science and Technology, 66, 172–178. https://doi.org/10.1016/j.lwt.2015.10.036

 

Ning Chen | Engineering | Best Researcher Award | 13558

Mr. Ning Chen | Engineering | Best Researcher Award

Mr. Ning Chen, Shandong University of Science and Technology, China

Mr. Ning Chen, Lecturer at Shandong University of Science and Technology, China, is an emerging researcher in high-precision mechatronic systems. With a Ph.D. in mechanical engineering and prior industry experience, he has developed innovative piezoelectric galvanometers, stiffness-adjustable servo systems, and micro-nano motion platforms. His work is shaping the future of laser positioning, scanning, and ultra-precision control technologies. Backed by prestigious national and provincial research grants, Mr. Chen exemplifies academic excellence and practical innovation in mechanical and precision engineering.

Author Profile

Orcid

Education

Dr. Weijian Wang embarked on his academic journey with a solid foundation in chemical sciences. He earned his Bachelor’s degree in Chemical Engineering and Technology from the China University of Petroleum (East China)—an institution known for producing talent in energy and chemical sectors. His academic excellence and growing passion for applied chemical research led him to pursue a Master’s degree in Chemical Engineering at the China University of Mining and Technology, where he deepened his understanding of reaction engineering, process modeling, and advanced materials.

Eager to contribute to cutting-edge innovation in the energy sector, Dr. Wang pursued his Ph.D. in Chemical Technology at the Research Institute of Petroleum Processing (RIPP), Sinopec, one of China’s leading industrial research institutions. His doctoral training provided him with hands-on experience in industrial-scale research, advanced materials development, and interdisciplinary collaboration. To further strengthen his academic and research profile, Dr. Wang completed a postdoctoral fellowship at Zhejiang University, where he explored emerging materials and device applications, preparing him for a career at the intersection of academia and applied science.

Experience

In 2022, Dr. Wang joined Beibu Gulf University as an Associate Professor, where he has since led a promising research group focusing on halide perovskite materials. As a faculty member, he has embraced both teaching and research, mentoring students while pursuing innovative solutions to modern energy and optoelectronic challenges.

One of his key professional milestones includes leading the Guangxi Science and Technology Major Program (GuikeAA23062016). This ambitious research initiative demonstrates his leadership and technical capability in managing multi-disciplinary projects aligned with regional and national scientific goals. With no industry consultancies yet, Dr. Wang remains fully invested in academic research, pushing boundaries in materials science through both simulations and experimental designs.

Research Focus

Dr. Weijian Wang’s research is centered on the green synthesis and application of halide perovskite materials, a rapidly evolving class of compounds celebrated for their extraordinary optoelectronic properties. These materials are particularly promising in fields such as solar energy conversion, light-emitting diodes (LEDs), and medical bioimaging. At the heart of Dr. Wang’s innovation is the drive for sustainability. He has developed eco-friendly synthesis techniques that minimize environmental harm while maintaining material performance, advancing the goal of sustainable science. 🌱

In the field of perovskite solar cells, Dr. Wang employs simulation-assisted design methodologies to enhance energy conversion efficiency. His designs have led to devices with superior performance characteristics, addressing one of the key challenges in renewable energy technology. 🌞 Beyond energy, his research also extends to optoelectronic devices, including perovskite-based LEDs and imaging systems with applications in healthcare diagnostics and bioimaging. 💡

Dr. Wang’s robust scientific output includes 11 peer-reviewed publications in internationally recognized SCI-indexed journals, with eight authored as first or corresponding author. Additionally, he has secured 15 authorized invention patents as the primary inventor, underscoring his capacity to translate theoretical research into tangible technological innovations.

Award and Recognition

Despite being in the early stages of his academic journey, Dr. Wang has already built a strong research profile distinguished by originality, technical rigor, and innovation. His contributions have earned him 11 published articles in high-impact SCI-indexed journals, demonstrating both quality and consistency in scientific communication. 📚

Dr. Wang also holds 15 authorized invention patents, a notable achievement that reflects his focus on applied research and technology transfer. 🧾 These patents not only reinforce his expertise in halide perovskite materials but also highlight his dedication to practical solutions for global energy and environmental challenges.

Further elevating his academic standing, Dr. Wang currently leads a major government-funded research program, indicating trust in his leadership and vision at the national level. 💼 His H-index of 5 signifies an increasing impact within the scholarly community, with a trajectory that suggests sustained and growing influence in the years to come.

Although he does not yet hold editorial roles or memberships in professional societies, his impressive publication and patent record mark him as a promising figure in materials science. His career is on a path toward broader recognition, leadership roles, and continued contributions to the scientific community.

Publications

📖 A Semi-analytical Method for Vibro-Acoustic Properties of Functionally Graded Porous Piezoelectric Annular Plates with Cavity – Journal of Vibration Engineering and Technologies (2025).
📖 Enhancing the motion performance of 3-DOF micro/nano-manipulators facing thermo-piezoelectric-mechanical coupling effects – Sensors and Actuators A Physical (2025)
📖 Robust control of uncertain asymmetric hysteretic nonlinear systems with adaptive neural network disturbance observer – Applied Soft Computing (2024)
📖 Low thermal budget lead zirconate titanate thick films integrated on Si for piezo-MEMS applications – Microelectronic Engineering (2020)

 

 

 

zeyad A. H. Qasem | Engineering | Best Researcher Award | 13382

Dr. zeyad A. H. Qasem | Engineering | Best Researcher Award

Dr. zeyad A. H. Qasem, Donghai Laboratory, Zhejiang University, China

Dr. Zeyad Abdulaziz Hazaea Qasem is a dedicated postdoctoral researcher at Donghai Laboratory, Zhejiang University, China, with a strong background in communication and information engineering. Born in Taiz, Yemen, he holds a Ph.D. from Xiamen University and has conducted advanced research at top Chinese institutions like Peking University and Tsinghua University. With extensive academic and industrial experience—including work with Huawei and several universities—Dr. Qasem’s research spans nano-devices, telecommunications, and digital systems. He is a recipient of the Best Overseas Research Award from Xiamen University and is widely recognized for his innovative contributions to engineering and communication technologies.

Profile

Google Scholar

🌱 Early Academic Pursuits

Dr. Zeyad Abdulaziz Hazaea Qasem’s academic journey began in Taiz, Yemen, where he completed his high secondary education at Al Hurria High School in 2005. From a young age, Dr. Qasem exhibited a strong passion for science and technology, particularly in the field of telecommunications and networking. This passion led him to pursue a Bachelor’s degree in Communication Networking from Djillali Liabés University in Sidi Bel Abbès, Algeria, which he completed in 2010.

Not resting on his laurels, he immediately advanced his education by enrolling in a Master’s program at the same university, specializing in Digital Systems of Telecommunications. He completed his Master’s degree in 2012, further honing his skills in the increasingly vital field of communication engineering.

Driven by a desire for research excellence, Dr. Qasem moved to China in 2017, where he embarked on a Ph.D. in Communication and Information Engineering at Xiamen University. His academic perseverance culminated in a doctoral degree in 2021, during which he laid the foundation for impactful scientific research in communication technologies.

🧑‍💼 Professional Endeavors

Dr. Qasem’s career reflects a rare blend of academic knowledge and practical industry experience. Before his postdoctoral research positions, he held multiple key roles in the telecommunications sector, notably with Huawei Company in Yemen from 2014 to 2017, where he worked as a Core Network Engineer for GSM, CDMA, and LTE technologies. His tenure at Huawei equipped him with invaluable practical insights and earned him the Outstanding Technical Engineer Award in 2016.

Dr. Qasem also contributed to academia as a part-time lecturer at several Yemeni universities, including International Emirate University and LIMKOKWING University of Creative Technology. These roles showcased his commitment to mentoring the next generation of engineers even while pursuing a parallel career in industry.

Since 2022, he has served as a Postdoctoral Research Fellow at Peking University and a Visiting Scholar at the Tsinghua-Berkeley Shenzhen Institute—two of China’s most prestigious institutions. In 2023, he joined the Donghai Laboratory at Zhejiang University, where he currently works on cutting-edge research in nano-devices and communication systems.

🔬 Contributions and Research Focus

Dr. Qasem’s research lies at the intersection of nanotechnology, digital communication systems, and network engineering. His contributions include exploring novel solutions for efficient data transmission, next-generation wireless communication, and nano-device integration.

His doctoral and postdoctoral research focuses on enhancing communication infrastructure and developing futuristic nano-scale technologies for more resilient and efficient systems. His work supports the global demand for faster, more secure, and more intelligent communication systems, making a significant contribution to the digital transformation age.

🏆 Accolades and Recognition

Over the years, Dr. Qasem has been widely recognized for his contributions in both academia and industry. Among his most notable achievements are:

  • 🥇 Best Overseas Research Award (2021) from Xiamen University

  • 🏅 Outstanding Technical Engineer from Huawei (2016)

  • 🎓 Multiple professional certifications, including:

    • Cisco Certified Network Associate (CCNA)

    • Computer Maintenance Diploma (EMICOM Institute, Algeria)

    • Huawei “Train the Trainer” Certification

    • Training in FLUKE NETWORKS (USA)

These accolades not only validate his academic and technical excellence but also highlight his global exposure and adaptability.

🌍 Impact and Influence

Dr. Qasem’s work has left a noticeable footprint on both national and international research platforms. His Google Scholar profile showcases a growing list of publications and citations, reflecting the relevance and application of his research across global scientific communities.

His teaching roles have influenced students in Yemen and China, bridging cultural and academic gaps and promoting the advancement of science and technology in developing nations. As a researcher, he is building technological solutions that promise to revolutionize communication infrastructure, particularly in areas with growing data demands.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Qasem is well-positioned to become a leading global voice in communication and nano-device research. His interdisciplinary approach, combining engineering principles with real-world applications, makes him a valuable asset to the international scientific community.

He aims to expand collaborative research, enhance telecommunication infrastructure for underdeveloped regions, and contribute to the green transition of digital technologies. His current role at Donghai Laboratory opens the door to transformative innovations that could define the next decade of smart connectivity.

Dr. Qasem’s legacy is still in the making, but his vision, determination, and accomplishments already make him a suitable candidate for prestigious research honors, including the Best Researcher Award.

Underwater image transmission using spatial modulation unequal error protection for internet of underwater things

Author: H Esmaiel, ZAH Qasem, H Sun, J Wang, NU Rehman Junejo
Journal: Sensors
Year: 2019

Multi-stage feature extraction and classification for ship-radiated noise

Author: H Esmaiel, D Xie, ZAH Qasem, H Sun, J Qi, J Wang
Journal: Sensors
Year: 2021

Juan Pulhin | Forest Governance | Excellence in Research

Prof. Juan Pulhin | Forest Governance | Excellence in Research

Professor and UP Scientist III at University of the Philippines Los Baños, Philippines.

Professor Juan M. Pulhin is a distinguished full professor and former Dean of the College of Forestry and Natural Resources at the University of the Philippines Los Baños (UPLB). With a career marked by significant academic and scientific achievements, he has held the esteemed rank of UP Scientist III since 2011. Prof. Pulhin is known for his pioneering work in the fields of human dimensions of environmental change, social forestry, and natural resource governance. He has made notable contributions to the development of participatory approaches for climate risk, vulnerability, and adaptation assessments. His work has been instrumental in enhancing climate resiliency and adaptive capacity across various local government units in the Philippines. Prof. Pulhin has served as a Lead Author and Coordinating Lead Author for the Intergovernmental Panel on Climate Change (IPCC), contributing to global climate assessments. He is also an Academician of the National Academy of Science and Technology (NAST) in the Philippines, reflecting his national and international standing in the scientific community. His extensive experience and dedication to environmental research and governance continue to drive impactful change and innovation in sustainable development practices.

Professional Profiles:

Education

Prof. Juan M. Pulhin holds a Ph.D. in Forestry and Environmental Studies from the University of the Philippines Los Baños (UPLB), where he also earned his Master of Science in Watershed Management and his Bachelor of Science in Forestry. His academic journey at UPLB equipped him with extensive expertise in forestry, watershed management, and environmental studies, laying a strong foundation for his distinguished career in academia and research. 🌳🏞️🌲

Professional Experience

Prof. Juan M. Pulhin is a full Professor and former Dean of the College of Forestry and Natural Resources at the University of the Philippines Los Baños (UPLB). Since 2011, he has held the prestigious rank of UP Scientist III, recognizing his scholarly contributions and international scientific standing. For the past decade, he has chaired the UPLB Interdisciplinary Studies Center for Integrated Natural Resources and Environment Management (UPLB-INREM), leading its development into a prominent center for research and public service. Prof. Pulhin has also been a Visiting Professor at the University of Tokyo and a Visiting Scholar at Waseda University in Japan. His extensive experience includes roles as a Lead Author and Coordinating Lead Author for the Intergovernmental Panel on Climate Change (IPCC) and contributions to various national and regional environmental initiatives. 🌏📝🌱

Research Interest

Prof. Juan M. Pulhin is an internationally recognized scientist specializing in the human dimensions of environmental change, social forestry, and natural resource governance. His pioneering work focuses on participatory approaches to climate risk, vulnerability, and adaptation assessments. He integrates scientific and local knowledge to address climate change challenges. Prof. Pulhin’s research contributes to enhancing the adaptive capacity and climate resilience of communities, particularly in regions affected by severe weather events. His work on climate change assessments is cited by the United Nations Framework Convention on Climate Change (UNFCCC) and the Climate Change Commission (CCC) in the Philippines. Additionally, he has contributed to the development of collaborative frameworks for climate change adaptation and mitigation in Southeast Asia, working with organizations like SEARCA and ASEAN. His research continues to influence policies and practices in community-based forest management and environmental protection. 🌳🌍🔬

Award and Honors

Prof. Juan M. Pulhin has been recognized both nationally and internationally for his significant contributions to environmental science and climate change. His most notable achievement is his contribution to the 2007 Nobel Peace Prize, which was awarded to the Intergovernmental Panel on Climate Change (IPCC) and former U.S. Vice President Al Gore. This award highlighted his role in advancing global understanding of climate change. Additionally, he holds the highest academic rank of UP Scientist III at the University of the Philippines, a testament to his scholarly excellence and international scientific standing. As an Academician of the National Academy of Science and Technology (NAST) in the Philippines, he continues to be a leading voice in his field. His numerous awards reflect his commitment to integrating science with community-based approaches to environmental management and climate resilience. 🌍🔬✨

Research Skills

Professor Juan M. Pulhin excels in various research methodologies and analytical techniques that have propelled his career as an influential environmental scientist. His expertise includes the development of participatory approaches for climate risk, vulnerability, and adaptation assessments, integrating both scientific and local knowledge. This blend of interdisciplinary methods ensures that his research is both scientifically robust and practically applicable. Prof. Pulhin is adept at using qualitative and quantitative research techniques to analyze the human dimensions of environmental change, social forestry, and natural resource governance. He is skilled in the application of GIS and remote sensing for environmental monitoring and assessment, which enhances his research on forest fragmentation and landscape change. His involvement with the Intergovernmental Panel on Climate Change (IPCC) as a Lead Author and Coordinating Lead Author showcases his capability in synthesizing complex scientific data for global climate reports. Moreover, Prof. Pulhin’s extensive experience in collaborative research projects, both locally and internationally, highlights his ability to work effectively in multidisciplinary and multicultural research environments. His proficiency in these diverse research skills underpins his significant contributions to the fields of environmental management, climate change adaptation, and sustainable development.

Publications

  • Correction to: Exploring bioproduction systems in socio-ecological production landscapes and seascapes in Asia through solution scanning using the Nature Futures Framework (Sustainability Science, (2023), 10.1007/s11625-023-01338-9)
    • Authors: Lahoti, S.A., Withaningsih, S., Lomente, L., Hashimoto, S., Saito, O.
    • Year: 2024
    • Citations: 1
  • Factors affecting land use and land cover change and fragmentation in selected protected areas in the Philippines
    • Authors: Buhay, A.F.V., Cruz, R.V.O., Tiburan, C.L., Pulhin, J.M.
    • Year: 2023
  • No Island is an Island: Understanding the Geo-social Interaction of Small Islands in the Philippine Archipelagoscape
    • Authors: Hilvano, N.F., Bantayan, N.C., Pulhin, J.M., Nelson, G.L.M., Arboleda, M.D.M.
    • Year: 2023
  • Ten new insights in climate science 2022
    • Authors: Martin, M.A., Boakye, E.A., Boyd, E., Van Der Geest, K., Zhao, Z.J.
    • Year: 2022
    • Citations: 10
  • Estimating the Recreational Value and Setting Entrance Fees during Early Development of Ecotourism Sites: the Case of Bataan Natural Park
    • Authors: Fajardo, A.R., Sajise, A.J.U., Predo, C.D., Diona, D.L.Z., Pulhin, J.M.
    • Year: 2022
  • Small Island Spatial Accessibility: The Case of San Vicente, Northern Samar, Philippines
    • Authors: Hilvano, N.F., Bantayan, N.C., Pulhin, J.M., Nelson, G.L.M., Arboleda, M.D.M.
    • Year: 2022
    • Citations: 2
  • Unbundling Property Rights among Stakeholders of Bataan Natural Park: Implications to Protected Area Governance in the Philippines
    • Authors: Pulhin, J.M., Fajardo, A.R., Predo, C.D., De Luna, C.C., Diona, D.L.Z.
    • Year: 2022
    • Citations: 3
  • Recalibrating burdens of blame: Anti-swidden politics and green governance in the Philippine Uplands
    • Authors: Dressler, W.H., Smith, W., Kull, C.A., Carmenta, R., Pulhin, J.M.
    • Year: 2021
    • Citations: 19
  • Enhancing resilience through capacity building in LCCAP formulation in the local government of Aurora, Philippines
    • Authors: Pulhin, J.M., Tapia-Villamayor, M.A., de Luna, C.C., Tiburan, C.L., Almarines, N.R.
    • Year: 2021

 

Hatef Pourrashidi Alibigloo | Agricultural Engineering | Best Researcher Award

Dr. Hatef Pourrashidi Alibigloo | Agricultural Engineering | Best Researcher Award

Faculty Member at University of Religions and Denominations, Iran.

Dr. Hatef Pourrashidi Alibigloois an accomplished professional with expertise spanning communication science, journalism, and agricultural engineering. Holding a Ph.D. in Communication Science from Islamic Azad University, Tabriz, Iran, alongside degrees in journalism and agricultural engineering, Dr. Mall’s interdisciplinary background enriches his work. With experience as an Assistant Professor at the University of Religions and Denominations, Qom, Iran, and prior roles in university lecturing and managerial positions in public relations and international affairs, Dr. Mall demonstrates versatility and leadership. His research interests encompass media studies, journalism, and public relations, exploring the impact of media on cultural perceptions and societal change.

Professional Profiles:

Education

Dr. Hatef Pourrashidi Alibigloois  academic journey began with a Bachelor’s in Agricultural Engineering from Urmia University, Iran, followed by a Master’s in Communication Science and Journalism from Islamic Azad University, Tehran. He furthered his academic pursuits with a Ph.D. in Communication Science from Islamic Azad University, Tabriz. This diverse educational background equips him with a unique interdisciplinary perspective.

Professional Experience:

Dr. Hatef Pourrashidi Alibigloois  has held various positions spanning academia, public relations, journalism, and management. His roles include Assistant Professor at the University of Religions and Denominations, Qom, Iran, University Lecturer at the University of Applied Science and Technology in Tehran and Urmia, and Public Relations & International Affairs Manager at the Maku Free Zone Organization.

Research Interest:

Dr. Hatef Pourrashidi Alibigloois  research interests primarily revolve around communication science, with a focus on areas such as media studies, journalism, and public relations. He is particularly interested in exploring the role of media in shaping cultural perceptions and facilitating social change.

Award and Honors:

Throughout his career, Dr. Hatef Pourrashidi Alibigloois has been recognized for his contributions to academia and journalism. He has received prestigious awards from the Ministry of Education and the Ministry of Culture and Islamic Guidance for his excellence in writing, journalism, and photojournalism.

Research Skills:

Dr. Hatef Pourrashidi Alibigloois  possesses a diverse skill set in research methodologies, data analysis, and communication strategies. His proficiency in qualitative and quantitative research methods, coupled with his extensive experience in journalism and media, enables him to conduct comprehensive and insightful studies in his field.