Jiaming Ni | 2D Materials | Best Researcher Award

Dr. Jiaming Ni | 2D Materials | Best Researcher Award 

Dr. Jiaming Ni | Nanchang hangkong university | China

Jiaming Ni holds a Ph.D. in Materials Science and Engineering from the Autonomous University of San Luis Potosí, Mexico, a Master’s degree in Mechanical and Electrical Engineering from Guilin University of Electronic Technology, and a Bachelor’s degree in Vehicle Engineering from Nanchang University. His research focuses on semiconductor materials, first-principles calculations, and photocatalytic hydrogen production. He has published impactful studies on GaS/XTe₂ heterostructure photocatalysts (International Journal of Hydrogen Energy, IF 7.2), van der Waals heterostructures for hydrogen production (Journal of Materials Chemistry C, IF 7.059), and gas adsorption on doped WSe₂ (Applied Surface Science, IF 6.182).

Author Profile

Scopus | Orcid

Education

From the very beginning of his academic journey, Jiaming Ni demonstrated a keen interest in engineering, materials science, and technological innovation. His foundational education in Vehicle Engineering at the College of Science and Technology, Nanchang University, provided him with a strong technical background in mechanics, design, and manufacturing processes. Eager to expand his expertise, he pursued a Master’s degree in Mechanical and Electrical Engineering at Guilin University of Electronic Technology, where he gained deeper knowledge in interdisciplinary engineering systems. His thirst for innovation and research led him to the Autonomous University of San Luis Potosí, Mexico, where he completed his Ph.D. in Materials Science and Engineering under the guidance of Prof. Shaoxian Song. Throughout his academic journey, Ni developed a strong foundation in semiconductor materials, micro/nano-structures, and advanced computational methods, preparing him for impactful research contributions in his later career.

Experience

After completing his higher education, Jiaming Ni embarked on a career that bridged academia and industry. His early professional role as a Manufacturing Engineer at Semiconductor Manufacturing International Corporation (SMIC) enabled him to apply his technical skills in a highly demanding semiconductor fabrication environment. Later, as a Process Integration Engineer at Guangzhou CanSemi Technology Inc., he worked on optimizing semiconductor production processes, gaining valuable insights into industrial-scale applications of his research expertise. Currently, Ni serves as a Lecturer at Nanchang Hangkong University, where he combines teaching, mentorship, and advanced research to inspire the next generation of engineers and scientists.

Research Focus

Jiaming Ni’s research focuses on semiconductor materials, first-principles calculations, micro- and nano-structure simulations, and the optoelectronic properties of advanced materials. He has made significant contributions to the development of novel two-dimensional (2D) materials, with a particular emphasis on their application in photocatalytic hydrogen production, a promising technology for sustainable energy generation. His expertise also encompasses gas adsorption phenomena and the performance evaluation of alloy materials, addressing challenges in both energy and environmental fields. Among his influential works are studies on GaS/XTe₂ (X = W, Mo) heterostructure photocatalysts for efficient water splitting (International Journal of Hydrogen Energy, IF 7.2), van der Waals heterostructures based on InSe–XS₂ (X = Mo, W) as photocatalysts for hydrogen production (Journal of Materials Chemistry C, IF 7.059), and adsorption of small gas molecules on strained WSe₂ doped with Pd, Ag, Au, and Pt (Applied Surface Science, IF 6.182, cited 9 times). Collectively, these contributions highlight his ability to bridge theoretical computational modeling with practical applications in renewable energy, semiconductor technologies, and environmental protection.

Award and Recognition

Jiaming Ni’s scholarly work has been recognized through publications in high-impact, top-tier journals across the fields of materials science and energy research. His studies have been cited by peers worldwide, reflecting the influence and credibility of his findings. Publishing in Chinese Academy of Sciences (CAS) Zone 1 and Zone 2 journals underscores the quality and international competitiveness of his work. Moreover, his research collaborations with scientists across different countries have further amplified the global reach of his contributions.

Impact and Influence

Through his combined academic and professional endeavors, Ni has contributed to advancing the global understanding of 2D materials, semiconductor device engineering, and sustainable hydrogen production technologies. His work in photocatalytic hydrogen generation addresses one of the most pressing challenges of our time—developing clean, renewable energy sources. In addition, his studies on gas adsorption and alloy performance have implications for environmental monitoring, energy storage, and advanced manufacturing. His career path reflects a unique balance between theoretical research and practical industrial application, making his expertise valuable to both academic and commercial sectors.

Tailoring the electronic and optical properties of layered blue phosphorene/ XC (X=Ge, Si) vdW heterostructures by strain engineering.

Author: Jiaming Ni, Mildred Quintana, Feifei Jia , Shaoxian Song
Journal: Nanostructures
Year: 2021

Adsorption of small gas molecules on strained monolayer WSe2 doped with Pd, Ag, Au, and Pt: A computational investigation.

Author: Jiaming Ni, Wei Wang, Mildred Quintana, Feifei Jia, Shaoxian Song
Journal: Applied Surface Science
Year: 2020

Theoretical investigation of the sensing mechanism of the pure graphene and AL,B,N,P doped mono-vacancy graphene-based methane.

Author: Jiaming Ni, Bingqiao Yang, Feifei Jia, Yulai She, Shaoxian Song, Mildred Quintana
Journal: Chemical Physics Letters
Year: 2018

Conclusion

Jiaming Ni has established himself as a dedicated and innovative researcher whose work seamlessly integrates cutting-edge computational modeling with real-world applications in materials science. His advancements in 2D semiconductor materials, photocatalytic hydrogen production, gas adsorption, and alloy performance analysis not only contribute to the scientific community but also address pressing global challenges in clean energy and environmental sustainability. Through his impactful publications, interdisciplinary expertise, and commitment to innovation, he continues to pave the way for next-generation materials and technologies that hold the potential to transform both industry and society.

Wenjihao Hu | Advanced Materials | 13507

Prof. Wenjihao Hu | Advanced Materials 

Prof. Wenjihao Hu, Central South University, China

Professor Wenjihao Hu is a distinguished scholar and Subdean at the School of Resource Processing and Biological Engineering, Central South University, China. As a doctoral supervisor and key member of national and provincial research centers, he has led several major national and international projects focusing on mineral processing, smart mining, and environmental remediation. With over 40 SCI-indexed publications and 10 patents, his innovations in nanoconfined adsorption materials have significantly advanced heavy metal removal techniques. Actively collaborating with top global institutions, Prof. Hu plays a vital role in academic leadership, research innovation, and the cultivation of future scientific talents.

Author Profile

Google Scholar

🎓 Early Academic Pursuits

Professor Wenjihao Hu’s academic journey began with a strong foundation in resource processing and biological engineering. His passion for materials science and environmental sustainability shaped his pursuit of higher education in mineral engineering and nanotechnology. This early dedication led him to academic excellence and specialization in interface chemistry and advanced mineral materials. His academic training prepared him for a multidisciplinary approach, combining colloidal science, surface interactions, and engineering applications. These formative experiences laid the groundwork for a prolific academic and research career centered on solving critical environmental and mineral resource challenges.

🧪 Professional Endeavors

Currently serving as a Professor and Subdean at the School of Resource Processing and Biological Engineering, Central South University, Prof. Hu holds several key leadership roles. He is a distinguished professor at the National Engineering Research Center for Individualized Diagnosis and Treatment Technology, a doctoral supervisor, and Deputy Department Director of the Department of Inorganics. His affiliations also include being a core member of Hunan Province’s key laboratories focusing on strategic calcium mineral resources and mineral materials applications, and a vital contributor to the National Engineering Technology Research Center for Heavy Metal Pollution Prevention.

Prof. Hu has hosted and contributed to numerous national and international research initiatives. These include one National Key R&D Program, two National Natural Science Foundation projects, and international collaborations with institutions such as the University of Alberta, McGill University, Columbia University, University of Queensland, Imperial College London, and many more.

🔬 Contributions and Research Focus: Advanced Materials 

Prof. Hu’s research spans across mineral energy, smart mining, mineral environment, mineral medicine, and applied colloid and interface science. His investigations into nano-confinement mechanisms, surface modification, and intermolecular forces are reshaping the field of mineral processing.

A key contribution includes his study on the nanoconfined adsorption structure ZrP@HNTs. By confining zirconium phosphate within halloysite nanotubes, his team achieved an extraordinary threefold increase in lead ion (Pb²⁺) adsorption capacity, enhancing both performance and stability. This innovation demonstrates how nanoconfinement can enrich ion concentration and facilitate superior surface interaction—a finding confirmed by atomic force microscopy (AFM) and finite element simulations. Such research is instrumental in advancing sustainable and high-efficiency heavy metal remediation technologies.

🏅 Accolades and Recognition

Prof. Hu is widely recognized for his leadership and scientific contributions. He holds prestigious editorial positions including:

  • Editorial Board Member of Chinese and English Journal of Nonferrous Metals

  • Youth Editorial Committee Member of the Journal of Engineering Science

  • Academic Editor of Minerals

  • Member of editorial teams for Comprehensive Utilization of Mineral Resources and Nonferrous Metal Science and Engineering

His professional memberships reflect his leadership in the field, including:

  • Deputy Secretary General, Mining Process Interface Chemistry Committee

  • Vice Chairman, China International Mineral Processing Young Scholars Forum

  • Executive Director, Chinese Ceramics Society

He has published over 40 SCI-indexed journal articles, registered 10 patents, and actively contributes to cutting-edge national research projects, including the National Natural Science Foundation Youth Project and postgraduate innovation projects at Central South University.

🌍 Impact and Influence

Prof. Hu’s multidisciplinary research and leadership have had a transformative impact on both academic and industrial domains. His collaborations with global institutions have fostered academic exchange, capacity building, and technology transfer across continents. He plays a crucial role in mentoring young researchers and postgraduate students, equipping the next generation with practical skills and theoretical insights in nanomaterials, surface chemistry, and sustainable engineering.

Furthermore, his innovative approaches to mineral interface chemistry and clean resource utilization address real-world environmental challenges, particularly in heavy metal pollution—a concern of growing international significance.

🧭 Legacy and Future Contributions

Prof. Wenjihao Hu continues to push boundaries in smart and sustainable mining, advanced material design, and nano-interface interactions. His ongoing projects aim to deepen our understanding of ion selectivity, gas enrichment of materials, and scale-up of nano-composite membranes.

As a core backbone of national and provincial key laboratories, his legacy lies not only in his scientific achievements but also in his commitment to education, collaboration, and public service. With an ever-growing network of international partnerships and a vision for environmental sustainability, Prof. Hu is poised to make even greater contributions in the decades to come.

✍️ Publication Top Notes


📘 Deposition and adhesion of polydopamine on the surfaces of varying wettability

Author: C Zhang, L Gong, L Xiang, Y Du, W Hu, H Zeng, ZK Xu
Journal: ACS applied materials & interfaces

Year: 2017


📘 A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation

Author: T Yan, X Chen, T Zhang, J Yu, X Jiang, W Hu, F Jiao
Journal: Chemical Engineering

Year: 2018


📘Unraveling roles of lead ions in selective flotation of scheelite and fluorite from atomic force microscopy and first-principles calculations

Author: J He, W Sun, H Zeng, R Fan, W Hu, Z Gao
Journal: Minerals Engineering
Year: 2022