Heer Wang | Environmental and Sustainable Materials | Research Excellence Award

Dr. Heer Wang | Environmental and Sustainable Materials | Research Excellence Award 

Kunming University of Science and Technology | China

Dr. Heer Wang is an emerging scholar in applied economics whose research lies at the intersection of industrial transformation, climate change, labor mobility, and sustainable economic development. His work explores how evolving economic structures and environmental shocks shape household behavior, productivity, and long-term growth pathways, particularly within developing and transitional economies. By integrating rigorous microeconometric evaluation methods with rich empirical data, he contributes meaningful insights into how societies adapt to climate risks and structural shifts. A major strand of his research investigates the socioeconomic consequences of climate variability, especially extreme rainfall and its implications for rural livelihoods. His publications in leading journals such as Science of The Total Environment and Applied Economic Perspectives and Policy highlight how climate shocks influence labor mobility, household vulnerability, agricultural productivity, and consumption smoothing. His studies provide evidence-based perspectives that deepen the understanding of how rural communities manage risk, adjust labor allocation, and navigate long-term adaptation strategies under environmental uncertainty. Another important area of his work focuses on industrial structure upgrading and technological capability. Through theoretical and empirical analyses published in the Asian Journal of Technology Innovation, his research examines the depth and sophistication of structural transformation, revealing how technological capacity and sectoral linkages drive high-quality economic development. His work contributes to policy discussions on how emerging economies can enhance industrial competitiveness while maintaining sustainable growth. In addition to published work, he has developed several working papers addressing market integration, climate-induced behavioral responses, and the dynamics of agricultural adaptation. These studies reflect a consistent research theme: understanding how economic agents respond to shocks and incentives within rapidly evolving socioeconomic environments. His research portfolio is reinforced by participation in multiple interdisciplinary and national research projects funded by major institutions. These projects span topics such as digital economy development, fertility policy evaluation, labor mobility under technological disruption, climate risk prediction using artificial intelligence, and the economic implications of population aging. His role across these initiatives demonstrates strong capabilities in empirical modeling, policy analysis, and data-driven decision support. He brings expertise in microeconometrics, policy evaluation techniques, and quantitative analysis using software platforms such as Stata, R, and SPSS. His work contributes directly to academic knowledge, policymaking, and practical interventions aimed at improving resilience, enhancing productivity, and supporting sustainable economic progress. Overall, his research advances critical conversations on how economies can navigate structural change while adapting to environmental and demographic challenges.

Citation Metrics (Google Scholar)

100
   80
   60
   50
   40
   30
   20
   10
     5
     0

Citations
31

Documents
3

h-index
2

Citations

Documents

h-index


View Google Scholar Profile

Featured Publications

Weijian Wang | Sustainable Materials | Best Researcher Award | 13556

Assoc Prof Dr. Weijian Wang | Sustainable Materials | Best Researcher Award

Assoc Prof Dr. Weijian Wang, Beibu Gulf University, China

Assoc. Prof. Dr. Weijian Wang, currently serving at Beibu Gulf University, is a promising researcher in the field of halide perovskite materials. With a strong academic foundation and postdoctoral training from Zhejiang University, his work emphasizes green synthesis and innovative applications of perovskites in solar cells, LEDs, and biomedical fields. He has published 11 SCI-indexed papers, authored 15 authorized patents, and led a major Guangxi research project, showcasing both academic rigor and practical innovation. His contributions, particularly through simulation-aided design and material fabrication, demonstrate significant potential for advancing sustainable energy technologies and high-performance optoelectronic devices.

Author Profile

Orcid | Scopus
Education

Dr. Weijian Wang embarked on his academic journey with a solid foundation in chemical sciences. He earned his Bachelor’s degree in Chemical Engineering and Technology from the China University of Petroleum (East China)—an institution known for producing talent in energy and chemical sectors. His academic excellence and growing passion for applied chemical research led him to pursue a Master’s degree in Chemical Engineering at the China University of Mining and Technology, where he deepened his understanding of reaction engineering, process modeling, and advanced materials.

Eager to contribute to cutting-edge innovation in the energy sector, Dr. Wang pursued his Ph.D. in Chemical Technology at the Research Institute of Petroleum Processing (RIPP), Sinopec, one of China’s leading industrial research institutions. His doctoral training provided him with hands-on experience in industrial-scale research, advanced materials development, and interdisciplinary collaboration. To further strengthen his academic and research profile, Dr. Wang completed a postdoctoral fellowship at Zhejiang University, where he explored emerging materials and device applications, preparing him for a career at the intersection of academia and applied science.

Experience

In 2022, Dr. Wang joined Beibu Gulf University as an Associate Professor, where he has since led a promising research group focusing on halide perovskite materials. As a faculty member, he has embraced both teaching and research, mentoring students while pursuing innovative solutions to modern energy and optoelectronic challenges.

One of his key professional milestones includes leading the Guangxi Science and Technology Major Program (GuikeAA23062016). This ambitious research initiative demonstrates his leadership and technical capability in managing multi-disciplinary projects aligned with regional and national scientific goals. With no industry consultancies yet, Dr. Wang remains fully invested in academic research, pushing boundaries in materials science through both simulations and experimental designs.

Research Focus

Dr. Weijian Wang’s research is centered on the green synthesis and advanced application of halide perovskite materials, a field that is rapidly evolving due to its immense potential in next-generation energy and optoelectronic technologies. His work is particularly notable for developing environmentally friendly fabrication techniques, significantly reducing the environmental footprint of perovskite production. By leveraging simulation-assisted material design, Dr. Wang has enhanced the efficiency of perovskite-based solar cells, contributing to more sustainable energy solutions. Additionally, his innovations extend to optoelectronic applications, where he explores the integration of perovskites in high-performance LEDs and medical imaging technologies. With 11 SCI-indexed publications, including 8 as first or corresponding author, and 15 authorized invention patents as the lead inventor, Dr. Wang effectively translates scientific theory into practical, high-impact innovations that support both academic advancement and real-world applications.

Award and Recognition

Though still in the early stages of his academic career, Dr. Weijian Wang has already distinguished himself through the quality, innovation, and impact of his research contributions. He has published 11 articles in SCI-indexed international journals, showcasing his expertise in halide perovskite materials and their applications. As the first inventor on 15 authorized patents, Dr. Wang has demonstrated a strong ability to transform research insights into patentable, practical technologies. He also leads a major government-funded research initiative, underscoring his capacity to manage and deliver on large-scale scientific projects. With an H-index of 5, his work is gaining increasing visibility and recognition in the academic community. While he currently does not hold editorial positions or professional memberships, his growing body of work and innovation pipeline clearly mark him as a rising figure in materials science, poised for future leadership and accolades.

Publications

📖Aqueous synthesis of stable Pb(OH)Br:Cu red phosphor with DFT insights into its luminescence mechanism – Optical Materials (2025)
📖 Axial Ligand-Modified PdN4 as Efficient Electrocatalysts for the Two-Electron Oxygen Reduction Reaction: Insights from DFT -The Journal of Physical Chemistry (2025)
📖 Ameliorating Properties of Perovskite and Perovskite–Silicon Tandem Solar Cells via Mesoporous Antireflection Coating Model – Advanced Electronic Materials (2023)