Qingshan Pan | Materials Science | Best Researcher Award

Dr. Qingshan Pan | Materials Science | Best Researcher Award 

Dr. Qingshan Pan | Jiangxi Science & Technology Normal University | China

Dr. Qingshan Pan, Professor at Jiangxi Science & Technology Normal University, is a distinguished researcher specializing in DNA nanomaterials, MOF nanozyme materials, and self-assembled nano/nanogel systems derived from traditional Chinese medicine components. His work focuses on developing antibacterial and anti-inflammatory nanomedicines, advanced wound dressings, and targeted tumor diagnostics and therapies. A recipient of funding from the National Natural Science Foundation of China and multiple provincial grants, Dr. Pan has authored over 20 SCI-indexed publications in leading journals such as Chemical Engineering Journal and ACS Applied Materials & Interfaces, contributing significantly to nanomedicine and precision therapeutics research.

Author Profile

Scopus

Education

Dr. Qingshan Pan’s academic journey began with a strong foundation in chemical engineering, earning his bachelor’s degree from the Department of Chemical Engineering and Technology, Central South University. His early studies nurtured a keen interest in material science, nanotechnology, and their biomedical applications. Driven by a passion for innovation, he pursued doctoral studies at the State Key Laboratory of Chemical Biology and Measurement, Hunan University, specializing in Analytical Chemistry, and graduated with his Ph.D. His doctoral training provided him with advanced expertise in nanoscale materials design, synthesis, and functionalization, particularly for healthcare applications. These formative years equipped him with a multidisciplinary skill set that integrates chemistry, biology, and materials science—an essential foundation for his later breakthroughs in nanomedicine.

Experience

Currently serving as a Professor at Jiangxi Science & Technology Normal University, Dr. Pan is actively involved in teaching, mentoring, and leading high-impact research projects. He has successfully secured funding from prestigious organizations, including the National Natural Science Foundation of China, the Jiangxi Province Outstanding Young Scholars Fund, the Jiangxi Province Natural Science Foundation, and the Education Department. Through these roles, he has developed innovative research programs that bridge fundamental nanoscience with real-world biomedical solutions. Beyond academia, Dr. Pan contributes to the growth of the scientific community by engaging in collaborations with other researchers, fostering interdisciplinary partnerships, and promoting the application of nanotechnology in medicine and healthcare.

Research Focus

Dr. Pan’s research portfolio is broad yet deeply specialized, encompassing DNA nanomaterials, metal–organic framework (MOF) nanozyme materials, and self-assembled nano/nanogel systems derived from traditional Chinese medicine components. These systems have been engineered for antibacterial and anti-inflammatory nanomedicines, advanced antibacterial dressings, and precision tumor diagnosis and therapy.

His innovative approach to combining traditional Chinese medicine with cutting-edge nanotechnology has led to the development of hybrid nanomaterials that exhibit unique bioactive properties, enhanced stability, and targeted delivery capabilities. By integrating DNA nanotechnology with MOF-based nanozymes, his work addresses key challenges in biomedical applications, such as targeted drug release, controlled therapeutic activity, and dual-function systems capable of both diagnosis and treatment. These contributions not only advance the frontiers of nanomedicine but also provide new strategies for combating bacterial infections, reducing inflammation, and improving cancer therapy outcomes.

Award and Recognition

Dr. Pan’s scientific achievements are reflected in his impressive publication record, with over 20 SCI-indexed papers in internationally renowned journals, including Chemical Engineering Journal and ACS Applied Materials & Interfaces. His work is recognized for its high citation value, innovative experimental design, and significant potential for translational application in clinical medicine. Receiving funding from multiple prestigious agencies underscores his reputation as a leading figure in nanomedicine research. His role as a principal investigator in national and provincial projects highlights his ability to conceive, lead, and execute complex research initiatives that meet rigorous scientific standards.

Impact and Influence

The impact of Dr. Pan’s research extends far beyond academic citations. His nanomedicine platforms have the potential to revolutionize how bacterial infections, inflammation, and tumors are diagnosed and treated. The antibacterial dressings developed in his lab could play a crucial role in preventing hospital-acquired infections and promoting faster wound healing. His tumor-targeted nanotherapies are paving the way for minimally invasive and highly specific cancer treatments, reducing side effects while improving efficacy. Furthermore, by integrating bioactive compounds from traditional Chinese medicine into modern nanocarriers, Dr. Pan is contributing to a new paradigm in personalized and culturally rooted healthcare innovation.

Publications 

Transition Metal Sulfide-Based Nanozymes: From Design Strategies to Applications in Chronic Wound Healing

Author: Yuying Zhang, Renxi Li, XianXi Li, Pengwu Zheng, Wufu Zhu, Cunpeng Nie, Qingshan Pan
Journal: ACS Applied Nano Materials
Year: 2025

Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases.

Author: Li Wan, Shizhe Li, Jiawei Du, Anqi Li, Yujie Zhan, Wufu Zhu, Pengwu Zheng, Dan Qiao, Cunpeng Nie, Qingshan Pan
Journal: ACS Biomaterials Science & Engineering
Year: 2025

Photothermally Enhanced Cascaded Nanozyme-Functionalized Black Phosphorus Nanosheets for Targeted Treatment of Infected Diabetic Wounds.

Author: Chunping Wen, Yan Zhang, Luogen Lai, Xuan Zhang, Yijun Liu, Qiuyan Guo, Rujue Peng, Yating Gao, Xufei Zhang, Yan He, Shan Xu, Dan Qiao, Pengwu Zheng, Qingshan Pan, Wufu Zhu
Journal: Advanced Healthcare Materials
Year: 2025

Conclusion

Dr. Qingshan Pan’s remarkable journey from his foundational studies in chemical engineering to his pioneering research in analytical chemistry and nanomedicine reflects a career marked by curiosity, dedication, and innovation. His expertise in designing DNA nanomaterials, MOF nanozyme platforms, and self-assembled nanogels bridges the gap between advanced material science and practical biomedical applications, addressing critical challenges in antibacterial, anti-inflammatory, and tumor-targeted therapies. Through his leadership in prestigious national and provincial research projects, his extensive scholarly publications, and his commitment to translating research into impactful solutions, Dr. Pan has firmly established himself as a trailblazer in interdisciplinary science. His work not only elevates the academic standing of Jiangxi Science & Technology Normal University but also contributes meaningfully to global advancements in nanotechnology and precision medicine. As his career progresses, Dr. Pan is poised to expand his influence, inspiring future scientists while continuing to innovate at the intersection of chemistry, biology, and medicine.

Weijian Wang | Sustainable Materials | Best Researcher Award | 13556

Assoc Prof Dr. Weijian Wang | Sustainable Materials | Best Researcher Award

Assoc Prof Dr. Weijian Wang, Beibu Gulf University, China

Assoc. Prof. Dr. Weijian Wang, currently serving at Beibu Gulf University, is a promising researcher in the field of halide perovskite materials. With a strong academic foundation and postdoctoral training from Zhejiang University, his work emphasizes green synthesis and innovative applications of perovskites in solar cells, LEDs, and biomedical fields. He has published 11 SCI-indexed papers, authored 15 authorized patents, and led a major Guangxi research project, showcasing both academic rigor and practical innovation. His contributions, particularly through simulation-aided design and material fabrication, demonstrate significant potential for advancing sustainable energy technologies and high-performance optoelectronic devices.

Author Profile

Orcid | Scopus
Education

Dr. Weijian Wang embarked on his academic journey with a solid foundation in chemical sciences. He earned his Bachelor’s degree in Chemical Engineering and Technology from the China University of Petroleum (East China)—an institution known for producing talent in energy and chemical sectors. His academic excellence and growing passion for applied chemical research led him to pursue a Master’s degree in Chemical Engineering at the China University of Mining and Technology, where he deepened his understanding of reaction engineering, process modeling, and advanced materials.

Eager to contribute to cutting-edge innovation in the energy sector, Dr. Wang pursued his Ph.D. in Chemical Technology at the Research Institute of Petroleum Processing (RIPP), Sinopec, one of China’s leading industrial research institutions. His doctoral training provided him with hands-on experience in industrial-scale research, advanced materials development, and interdisciplinary collaboration. To further strengthen his academic and research profile, Dr. Wang completed a postdoctoral fellowship at Zhejiang University, where he explored emerging materials and device applications, preparing him for a career at the intersection of academia and applied science.

Experience

In 2022, Dr. Wang joined Beibu Gulf University as an Associate Professor, where he has since led a promising research group focusing on halide perovskite materials. As a faculty member, he has embraced both teaching and research, mentoring students while pursuing innovative solutions to modern energy and optoelectronic challenges.

One of his key professional milestones includes leading the Guangxi Science and Technology Major Program (GuikeAA23062016). This ambitious research initiative demonstrates his leadership and technical capability in managing multi-disciplinary projects aligned with regional and national scientific goals. With no industry consultancies yet, Dr. Wang remains fully invested in academic research, pushing boundaries in materials science through both simulations and experimental designs.

Research Focus

Dr. Weijian Wang’s research is centered on the green synthesis and advanced application of halide perovskite materials, a field that is rapidly evolving due to its immense potential in next-generation energy and optoelectronic technologies. His work is particularly notable for developing environmentally friendly fabrication techniques, significantly reducing the environmental footprint of perovskite production. By leveraging simulation-assisted material design, Dr. Wang has enhanced the efficiency of perovskite-based solar cells, contributing to more sustainable energy solutions. Additionally, his innovations extend to optoelectronic applications, where he explores the integration of perovskites in high-performance LEDs and medical imaging technologies. With 11 SCI-indexed publications, including 8 as first or corresponding author, and 15 authorized invention patents as the lead inventor, Dr. Wang effectively translates scientific theory into practical, high-impact innovations that support both academic advancement and real-world applications.

Award and Recognition

Though still in the early stages of his academic career, Dr. Weijian Wang has already distinguished himself through the quality, innovation, and impact of his research contributions. He has published 11 articles in SCI-indexed international journals, showcasing his expertise in halide perovskite materials and their applications. As the first inventor on 15 authorized patents, Dr. Wang has demonstrated a strong ability to transform research insights into patentable, practical technologies. He also leads a major government-funded research initiative, underscoring his capacity to manage and deliver on large-scale scientific projects. With an H-index of 5, his work is gaining increasing visibility and recognition in the academic community. While he currently does not hold editorial positions or professional memberships, his growing body of work and innovation pipeline clearly mark him as a rising figure in materials science, poised for future leadership and accolades.

Publications

📖Aqueous synthesis of stable Pb(OH)Br:Cu red phosphor with DFT insights into its luminescence mechanism – Optical Materials (2025)
📖 Axial Ligand-Modified PdN4 as Efficient Electrocatalysts for the Two-Electron Oxygen Reduction Reaction: Insights from DFT -The Journal of Physical Chemistry (2025)
📖 Ameliorating Properties of Perovskite and Perovskite–Silicon Tandem Solar Cells via Mesoporous Antireflection Coating Model – Advanced Electronic Materials (2023)

Yan Wang | Sustainable Materials | Best Researcher Award

Assoc Prof Dr. Yan Wang | Sustainable Materials | Best Researcher Award 

Assoc Prof Dr. Yan Wang, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Assoc. Prof. Dr. Yan Wang, a dedicated researcher at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, specializes in advanced oxidation processes for water treatment. With over a decade of expertise, she has led innovations in catalytic materials, environmental functional membranes, and contaminant removal technologies. She has authored over 40 SCI-indexed publications, holds 8 patents, and actively collaborates on national projects focused on wastewater reclamation. Dr. Wang’s impactful contributions have earned her prestigious honors, including the IWA China Star Program Member and multiple national science awards, reinforcing her role as a key figure in sustainable water treatment research.

Author Profile

Scopus

🎓 Early Academic Pursuits

Dr. Yan Wang embarked on her academic journey with a deep-rooted passion for environmental science and sustainability. She pursued her doctoral degree at Shandong University, where she laid the foundation for her future in eco-environmental research. Her early academic focus on chemistry and materials science seamlessly blended with environmental applications, particularly in the realm of water treatment. This strong academic preparation not only shaped her scientific perspective but also inspired her to delve into the complex challenges facing global water systems.

In 2015, following her Ph.D., she joined the Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences—one of China’s most prestigious environmental research institutions. This marked the beginning of a prolific research career dedicated to solving pressing water contamination issues through scientific innovation.

🧪 Professional Endeavors

Currently serving as an Associate Researcher and Master’s Supervisor at RCEES, Dr. Wang has cultivated an impressive research portfolio that includes:

  • 12 completed/ongoing projects

  • 40+ high-impact publications in SCI/Scopus-indexed journals

  • 8 patents (published/under process)

  • 1 authored book

  • 2 consultancy/industry collaborations

Her editorial contributions are notable as well, holding roles such as Guest Editor and Editorial Board Member for the journal Water Emerging Contaminants & Nanoplastics, showcasing her thought leadership in the field.

Dr. Wang is a key contributor to the National Natural Science Foundation of China-funded project: “Strengthening mechanism in wastewater reclamation by multiple micro-interface processes and water quality risk control,” where she designs novel materials for water remediation systems.

🧬 Contributions and Research Focus

Over the past decade, Dr. Wang has established herself as a prominent expert in advanced oxidation processes (AOPs), specializing in:

  • Development of environmental functional materials

  • Catalytic mechanisms for photo/electrochemical and Fenton-like systems

  • Removal of emerging contaminants and nanoplastics from water

A hallmark of her research is the development of self-supporting catalytic membranes via an in-situ synthesis approach—an innovation that enhances the stability and reusability of catalysts used in water treatment. Furthermore, she proposed a pioneering strategy to promote the regeneration of Fe(Ⅱ) from Fe(Ⅲ), addressing a long-standing limitation in Fenton catalytic cycles.

With an H-index of 27 (Web of Science), her research is both scientifically impactful and practically applicable, often bridging the gap between laboratory findings and real-world water purification systems.

🏆 Accolades and Recognition

Dr. Wang’s outstanding work has earned her national and international recognition, including:

  • IWA China Young Committee Member & Star Program Member

  • First Prize – Science and Technology Award, China Surface Engineering Association

  • Second Prize – Scientific and Technological Progress Award, Ministry of Environmental Protection

Her association with esteemed organizations like the International Water Association (IWA) and the Beijing Ecological Restoration Society further highlights her commitment to both the scientific community and sustainable development goals.

🌍 Impact and Influence

Dr. Wang’s influence extends beyond academia. Through collaborative partnerships with environmental companies, several of her technologies have been successfully commercialized and applied in water treatment plants across China. Her work not only contributes to improving water quality but also plays a critical role in shaping policy and best practices for water sustainability.

Her mentorship of graduate students fosters the next generation of eco-environmental scientists, and her editorial involvement ensures the advancement of scientific discourse on water contamination and remediation.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Yan Wang aims to lead transformative projects that address climate-adaptive water purification, nanomaterials for pollutant capture, and low-energy AOP systems. Her future research will likely focus on risk assessment and quality control frameworks for wastewater reuse, crucial for achieving circular water economies.

With her proven track record and visionary outlook, Dr. Wang is well-positioned to become a global leader in eco-environmental innovation, with a legacy grounded in scientific excellence, environmental impact, and public health protection.

✍️Publication Top Notes


📘 Ozone Reactions with Olefins and Alkynes: Kinetics, Activation Energies, and Mechanisms

Author: Yan Wang, Eva M. Rodríguez, Daniel Rentsch, Zhimin Qiang, Urs von Gunten

Journal: Physico-Chemical Treatment and Resource Recovery

Year: 2025


📘Synergistic photogeneration of reactive oxygen species by Fe species self-deposited on resorcinol-formaldehyde towards the degradation of phenols under visible light

Author: Wenxiang Ji, Huiyu Dong, Yan Wang, Zhimin Qiang

Journal: Chemosphere

Year: 2024


 

Dong Wang | Sustainable Materials | Best Researcher Award

Dr. Dong Wang | Sustainable Materials | Best Researcher Award 

Dr. Dong Wang, Xi’an university of technology, China

Dr. Dong Wang is a faculty member at Xi’an University of Technology in China. He is involved in research and teaching related to [specific field(s) of research or department]. His work contributes to [mention key areas of focus, e.g., materials science, engineering, environmental technology, etc.]. Dr. Wang is committed to advancing knowledge and innovation in his field through both academic and practical applications.

Profile

Scopus

Early Academic Pursuits 🎓

Dr. Wang’s academic journey began with his deep interest in printing and packaging technology, which led him to pursue a Ph.D. at Xi’an University of Technology. Throughout his educational career, he demonstrated a strong aptitude for interdisciplinary studies, integrating materials science with advanced engineering applications. His doctoral research focused on innovative methods for enhancing the properties of packaging materials through the use of biomimetic composites, laying the foundation for his future work in nanomaterials and flexible electronics.

His fascination with the potential of new materials in real-world applications led him to delve into nanotechnology, a field that would become central to his research career. His passion for research grew as he gained expertise in synthesizing new materials with enhanced functionality, including the development of materials inspired by nature—biomimetic composites—that could be applied to a wide range of industries, from packaging to electronics. This early immersion in cutting-edge research provided Dr. Wang with a solid foundation to move forward with his career as an independent researcher and academic.

Professional Endeavors 🛠️

In 2021, Dr. Wang took the position of lecturer at Xi’an University of Technology, marking the beginning of his independent research career. His professional endeavors are characterized by a focus on the development of advanced materials and technologies, particularly those that hold promise for sustainable and intelligent systems.

Dr. Wang’s research interests primarily revolve around the intersection of materials science, electronics, and sustainability. He has made notable strides in the areas of biomimetic composite materials, two-dimensional nanomaterials, flexible electronics technology, and intelligent sensors. These fields are at the forefront of technological advancements, especially in industries that seek to reduce their environmental footprint while improving the functionality of their products.

Contributions and Research Focus 🔬

Dr. Wang has contributed significantly to advancing knowledge in his research areas, publishing papers in some of the most prestigious international journals such as Advanced Materials, Chemical Engineering Journal, Journal of Colloid and Interface Science, and Polymer. His research contributions are instrumental in pushing the boundaries of material science, with a particular focus on improving the performance and functionality of materials used in high-tech industries.

One of his key research focuses is on two-dimensional nanomaterials, which have gained considerable attention due to their unique properties and potential applications in areas like energy storage, sensors, and flexible electronics. His exploration of these materials has opened new avenues for the design of more efficient, sustainable, and versatile materials for a wide range of industries.

 

Accolades and Recognition 🏆

Dr. Wang’s contributions to the field have not gone unnoticed. His exceptional work has earned him several prestigious awards, including the Science and Technology Progress Award from Shaanxi Province and the Science and Technology Award of Colleges from Shaanxi Province. These accolades recognize his innovative contributions to the fields of material science and technology, particularly in the development of advanced materials and their applications.

In addition to these awards, Dr. Wang has been entrusted with several key research projects. He has hosted grants from notable national funding bodies, including the National Natural Science Foundation of China, the China Postdoctoral Fund, and the Shaanxi Provincial Science Foundation. These grants are a testament to his research excellence and the high regard in which his work is held within the scientific community.

Impact and Influence 🌍

Dr. Wang’s research has a far-reaching impact, especially in industries that prioritize sustainability and technological innovation. His work on biomimetic materials is set to revolutionize packaging technology by offering more eco-friendly alternatives to traditional materials. His research into flexible electronics is particularly important as the world moves toward more integrated, wearable, and adaptable technologies.

Furthermore, his innovations in intelligent sensors could change the way industries monitor and interact with their environments. By developing sensors that can provide real-time, actionable data, Dr. Wang is contributing to the broader goal of creating more intelligent, responsive, and sustainable systems. His research holds great potential for fields as diverse as healthcare, industrial automation, and environmental monitoring.

Legacy and Future Contributions 🌱

Looking forward, Dr. Wang’s work is poised to leave a lasting legacy in the fields of material science, electronics, and sustainability. His ongoing research into two-dimensional nanomaterials and flexible electronics technology will continue to shape the next generation of advanced materials and devices. As industries increasingly look for more sustainable solutions, his contributions will be critical in meeting the challenges posed by environmental concerns and technological demands.

Publication Top Notes

Author: Zhu, K., Zhou, X., Wang, D., Hu, J., Luo, R.

Journal: Polymers

Year: 2024

Author: Pu, M., Fang, C., Zhou, X., Lei, W., Li, L.

Journal: Polymers

Year: 2024

Author: Zhu, K., Fang, C., Pu, M., Wang, D., Zhou, X.

Journal: Materials Science and Technology

Year:  2023,