Size Ai | Engineering | Research Excellence Award

Mr. Size Ai | Engineering | Research Excellence Award 

Harbin Institute of Technology | China

Dr. Size Ai, currently a PhD researcher at the Harbin Institute of Technology, is an emerging scholar in the field of mechanical metamaterials and advanced structural design. Holding a PhD in Mechanics from Harbin Institute of Technology, Dr. Ai has developed strong expertise in the design, modeling, and steady-state analysis of mechanical metamaterials, focusing particularly on negative stiffness structures, multi-stable metastructures, and pneumatic actuators with tunable mechanical responses. His academic journey reflects a commitment to high-quality research, having published three SCI-indexed papers in top-tier JCR Q1 journals such as Thin-Walled Structures and Engineering Structures. His works include: “Analysis of Negative Stiffness Structures with B-spline Curved Beams” (Thin-Walled Structures, 2024), “Design and Analysis of an Origami-Embedded Multi-Stable Metastructure with Shape Reconfiguration” (Engineering Structures, 2025), and “Deep Learning-Based Structural Design and Mechanical Properties Analysis of Pneumatic Actuators with Tunable Multistability” (Thin-Walled Structures, 2025). These publications highlight Dr. Ai’s ability to integrate theoretical modeling, simulation optimization, deep learning techniques, and experimental validation to solve complex challenges in structural mechanics. He has contributed significantly to ongoing national research through his involvement in the National Natural Science Foundation of China project (Grant No. 12372041), which further demonstrates his active engagement in advancing scientific knowledge. One of Dr. Ai’s major contributions includes developing a configuration parameterization method based on B-spline curves to customize negative stiffness characteristics in metamaterials. Additionally, he proposed a steady-state switching strategy using reconfigurable energy barrier elements, enabling precise control over multi-stability and shape transformation in engineered structures. His work successfully demonstrates, through combined theory, simulations, and experiments, the feasibility of programmable mechanical behavior after forming—an advancement with promising applications in soft robotics, adaptive structures, vibration isolation, and smart materials. Dr. Ai’s research continues to attract academic attention, with citations indexed in the Web of Science database. He maintains a strong ethical commitment to research integrity, with no consultancy projects, patents, or books yet undertaken. While he currently holds no editorial appointments, professional memberships, or formal collaborations, his research trajectory shows excellence, independence, and innovation, positioning him as a competitive candidate for the Research Excellence Award. Dr. Ai affirms that all submitted information is accurate, verifiable, and supported by relevant research links, including: 10.1016/j.tws.2025.114287 and 10.1016/j.tws.2023.111418. He fully agrees to the terms, policies, and responsibilities associated with this award nomination and submits this application with the highest level of integrity.

Profile: Scopus

Featured Publications

Ai, S., Xie, Z., & Wei, J. (2025, November). Deep learning-based structural design and mechanical properties analysis of pneumatic actuators with tunable multistability.

Ai, S., Hou, S., Wei, J., & Xie, Z. (2025, October). Design and analysis of an origami-embedded multi-stable metastructure with shape reconfiguration.

Hou, S., Wei, J., Ai, S., & Tan, H. F. (2025, March). Broadband nonlinear vibration isolation for a friction dynamic system via quasi-zero stiffness isolator.

Bian, S., Ai, S., Wei, J., & Qingxiang, J. (2025, March). Structural design and performance analysis of large inflatable solar membrane reflector.

Ai, S., Wei, J., Xie, Z., & Tan, H. F. (2023, November). Analysis of negative stiffness structures with B-spline curved beams.