Tianwei He | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Tianwei He | Chemistry and Materials Science | Best Researcher Award 

Yunnan University | China

Dr. Tianwei He is an internationally recognized materials scientist and computational chemist whose research advances the rational discovery and design of next-generation electrocatalysts for sustainable energy and chemical transformations. He is currently an Associate Professor at the School of Materials and Energy, Yunnan University, China, where he leads cutting-edge research at the intersection of density functional theory (DFT), nanocatalysis, and machine learning. His academic training and professional trajectory span leading institutions in China, Australia, Germany, and Macau, reflecting a strong global research footprint. Dr. He obtained his PhD in Computational Materials Science from Queensland University of Technology (QUT), Australia, following earlier degrees in Materials Science and Engineering. He subsequently held postdoctoral and assistant researcher positions at the Fritz Haber Institute of the Max Planck Society (Germany), University of Macau, and Queensland University of Technology, working under renowned scholars including Prof. Karsten Reuter, Prof. Hui Pan, and Prof. Aijun Du. These experiences shaped his expertise in theoretical catalysis, surface science, and reaction mechanism modeling. His research focuses on the computational discovery of novel nanocatalysts for key electrochemical and photocatalytic reactions within the C, N, O, and H cycles, including HER, OER, ORR, nitrogen reduction, CO/CO₂ reduction, and selective hydrogenation. By constructing structure- and composition-sensitive models using DFT, NEB, and molecular dynamics, Dr. He provides atomic-level insights into active sites, scaling relationships, and reaction pathways. In recent years, he has integrated machine learning approaches to accelerate catalyst screening and performance prediction. Dr. He has authored and co-authored an extensive body of high-impact publications in premier journals such as Journal of the American Chemical Society, PNAS, Chem, Advanced Materials, Advanced Energy Materials, Chemical Society Reviews, ACS Catalysis, and Small. With an h-index of 38, over 4,900 citations, and multiple ESI Highly Cited and Hot Papers, his work is widely recognized for its originality and influence in the catalysis community. His studies on single-atom catalysts, heteronuclear dual-atom systems, high-entropy catalysts, and low-dimensional heterostructures have significantly advanced understanding of catalytic stability, selectivity, and efficiency. In addition to research, Dr. He actively contributes to the scientific community as an invited reviewer for leading journals and as a member of early-career editorial boards for Materials Today Energy, Battery Energy, and Journal of Electrochemistry. Through sustained excellence in research, mentorship, and international collaboration, Dr. Tianwei He continues to play a pivotal role in shaping the future of computational catalysis and sustainable energy materials.

Citation Metrics (Google Scholar)

6000
5000
4000
3000
2000
1000
500
400
300
200
100
50
0

Citations
5020

Documents
30

h-index
38

Citations

Documents

h-index

View Google Scholar Profile

Featured Publications

Pibo Liu | Chemistry | Best Researcher Award | 13553

Assoc Prof Dr. Pibo Liu | Chemistry | Best Researcher Award

Assoc Prof Dr. Pibo Liu, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China

Assoc. Prof. Dr. Pibo Liu, from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, is a distinguished polymer chemist known for his pioneering work in precision polymerization. With a Ph.D. in Polymer Science and postdoctoral training at KAUST, he has advanced the field through the development of novel catalysts and functional materials. His research on rare-earth and Lewis acid catalysts has led to significant innovations in elastomer and fluorosilicone synthesis. With 38 SCI-indexed publications, 11 patents (4 granted), and active international collaborations, Dr. Liu’s contributions continue to shape the future of high-performance polymer materials.

Author Profile

Scopus

Education

Dr. Pibo Liu began his academic journey with a strong foundation in polymer science, earning his Ph.D. from Dalian University of Technology, one of China’s most reputable institutions for materials and chemical engineering. During his formative years, he demonstrated a keen interest in macromolecular chemistry and polymer architecture, distinguishing himself through a meticulous approach to scientific inquiry. His doctoral research laid the groundwork for a career dedicated to precision polymerization techniques, emphasizing innovation, scalability, and structural control.

Building upon this robust academic background, Dr. Liu pursued a postdoctoral fellowship at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. Under the mentorship of renowned polymer scientist Professor Nikos Hadjichristidis, he honed his expertise in advanced polymer synthesis methodologies. This international exposure deepened his scientific perspective, provided access to world-class research facilities, and helped establish his identity in the global polymer research community.

Experience

Dr. Liu currently serves as an Associate Professor at the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, where he leads several cutting-edge research projects. His professional trajectory reflects a harmonious blend of academic excellence and applied innovation. At DICP, Dr. Liu heads two major projects: one funded by the National Natural Science Foundation of China (Youth Program) and another under the Youth Innovation Program of the institute.

He has successfully completed three industry projects and is presently engaged in an ongoing corporate partnership, demonstrating his ability to translate academic research into practical industrial solutions. His contributions to academia and industry exemplify a dual commitment to theoretical advancements and technological applicability.

Research Focus

Dr. Liu’s research focuses on the design and development of novel polymerization techniques aimed at producing high-performance, specialty elastomer materials. He has made significant breakthroughs in catalytic polymer chemistry, particularly in the following areas:

  1. ⚙️ Rare-earth catalysts: Developed for controlling monomer sequences in cold-resistant and di-end-functionalized rubbers.

  2. 🌀 Anionic ring-opening polymerization: Devised for creating advanced fluorosilicone rubbers with improved thermal and chemical resistance.

  3. 🧲 Lewis acid catalysts: Enabled the selective ylide polymerization of complex structures like C3 polymers.

His work addresses longstanding challenges in structural control, functionality, and performance of elastomeric materials, offering viable solutions for industries ranging from aerospace to biomedical engineering. These contributions are not only academically valuable but also open pathways for commercial-scale polymer manufacturing.

Award and Recognition

Though early in his career, Dr. Liu’s work has already earned significant recognition. He has:

  • Published 38 peer-reviewed articles in top-tier journals such as Angewandte Chemie International Edition, Macromolecules, ACS Macro Letters, and Polymer Chemistry.

  • Achieved an H-index of 16 with over 569 citations according to Web of Science.

  • Filed 11 patents, out of which 4 have been granted, showcasing the patentable quality and industrial relevance of his work.

Publications

📘 Construction of PDMS-crosslinked tread composites that feature high energy-saving and anti-thermal oxidative performances – Composites Part A Applied Science and Manufacturing (2025) – Cited by 1 article.
📘 Aluminum-Mediated Polymerization of Allylic Ylides toward α,ω-Functionalized C3 Polymers with Enhanced Nontraditional Intrinsic Luminescence – Macromolecules (2024) – Cited by 1 article.
📘 Synthesis of α,ω-End Functionalized Polydienes: Allylic-Bearing Heteroleptic Aluminums for Selective Alkylation and Transalkylation in Coordinative Chain Transfer Polymerization – Angewandte Chemie International Edition (2024) – Cited by 4 articles.