Wenyuan Fang | Chemical Engineering | Best Researcher Award

Assist Prof Dr. Wenyuan Fang | Chemical Engineering | Best Researcher Award 

Jining Medical University | China

Dr. Wenyuan Fang is a dedicated researcher and academic in the field of pharmaceutical sciences, with a strong specialization in glycoengineering, functional oligosaccharides, and glycopeptide drug development. Fang research contributions demonstrate a significant commitment to advancing innovative strategies for the synthesis, design, and pharmacological evaluation of bioactive oligosaccharides and glycopeptide-based therapeutics. Over the years, Fang has built a solid body of work that integrates organic synthesis, enzymatic methodologies, glycosylation mechanisms, and functional material applications. This multidisciplinary approach has enabled to contribute meaningfully to drug discovery, targeted drug delivery, and the development of functional biomaterials. Her research focuses on several key areas, including the development of novel drug candidates derived from bioactive oligosaccharides, advanced chemoenzymatic synthesis strategies, the study of glycopeptide function, pharmacodynamic analysis of peptide drugs, glycan functional materials, and delivery systems for therapeutic peptides. Fang scholarly output includes publications in highly regarded journals such as Biotechnology Advances, Biomolecules, Chemistry – A European Journal, Chinese Journal of Chemistry, Journal of Materials Chemistry A, and Journal of Materials Science. These works reflect both depth and innovation, with several papers recognized as cover features or frontispieces, highlighting their scientific importance and impact. Fang contributions to oligosaccharide synthesis—particularly rapid enzymatic assembly, functional membrane development, and advanced material fabrication—demonstrate ability to bridge traditional pharmaceutical sciences with material chemistry and biomolecular engineering. Fang’s recent publications also showcase progress in the chemoenzymatic construction of human blood group antigens and the development of synthetic strategies for bioactive oligosaccharides, reinforcing the expertise in glycoscience and its translational potential. Fang has participated in funded research projects, including those supported by regional science foundations, contributing to the advancement of drug development technologies and the understanding of glycan structure–function relationships. Beyond research, Fang’s academic involvement includes collaboration with multidisciplinary teams, fostering an environment of scientific exchange and innovation. Wenyuan Fang work supports the development of next-generation therapeutic strategies and holds strong potential for real-world applications in pharmaceutical formulation, biomaterials, and biomedical research. Through consistent scholarly engagement, innovative project involvement, and contributions to scientific literature, Wenyuan Fang exemplifies a strong commitment to advancing pharmaceutical and glycoengineering research. Fang achievements reflect not only scientific rigor but also the potential to influence future developments in drug design, therapeutic delivery, and functional biomaterial innovation.

Citation Metrics (Scopus)

500
400
300
200
100
50
30
10
0

Citations
314

Documents
7

h-index
6

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Yuxuan Zhu | Chemical Engineering | Best Researcher Award

Dr. Yuxuan Zhu | Chemical Engineering | Best Researcher Award

The Institute of Seawater Desalination and Multipurpose Utilization | China

Dr. Zhu Yuxuan is a dedicated and highly motivated researcher in Materials Science and Engineering, specializing in materials chemistry and electrocatalytic membrane water treatment. Currently pursuing a PhD at Tiangong University (2021–2025), a Double First-Class institution, she focuses on the development of nano conductive carbon membranes and advanced solutions for industrial wastewater purification. Her doctoral work builds upon her strong foundation from both her Master’s (2018–2021) and Bachelor’s (2014–2018) degrees in Materials Science at Shandong Jianzhu University, where she gained extensive expertise in inorganic chemistry, solid-state physics, material testing, functional inorganic materials, and nanomaterials. Throughout her academic journey, she has engaged in impactful scientific research projects, including contributions to the Jiangxi Provincial Key R&D Program and the National Key R&D Program, where she played a crucial role in developing innovative electrochemically enhanced membrane separation methodologies, leading research teams, coordinating project milestones, and preparing comprehensive technical reports. Zhu Yuxuan has demonstrated exceptional scholarly productivity, having published nine first-author papers in respected journals such as Chemical Engineering Journal (IF 13.4), Separation and Purification Technology (IF 8.2), Journal of Environmental Chemical Engineering (IF 7.4), Journal of Alloys and Compounds, and others across Q1 and core-indexed journals. In addition to her strong publication record, she has contributed to five authorized patents, covering innovations in porous carbon composite materials, supercapacitor electrode materials, mesoporous carbon-metal oxide composites, and laboratory equipment design, reflecting both scientific ingenuity and practical engineering capability. Her research excellence has earned her numerous awards, including the Excellent Report Award at the Beijing-Tianjin-Hebei Membrane Forum (2024), university scholarships, and multiple provincial-level recognitions in academic competitions such as the “Internet+,” “Challenge Cup,” and energy conservation contests. Beyond her scientific achievements, she has held several leadership positions, including Chairman of the College Student Union and active member of the University Association for Science and Technology, earning distinctions as an Excellent Student Cadre and Outstanding Graduate Student in Social Practice. She possesses strong technical skills, including computational simulation (MS simulation, molecular dynamics) and proficiency in advanced characterization techniques such as SEM, IR spectroscopy, LC-MS, UV spectroscopy, electrochemistry, and Raman spectroscopy. With a robust academic background, extensive research experience, and a proven record of innovation, Zhu Yuxuan continues to make significant contributions to the fields of materials chemistry, electrocatalysis, and environmental water treatment.

Profiles: Scopus | Orcid

Featured Publications

Zhu, Y. (2026). Mediation of superoxide radicals enhances the efficient degradation of dimethylacetamide in continuous flow-through three-dimensional electrochemical membrane reactor. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2025.135619

Zhu, Y. (2025, December). B–N bond-mediated boron-doped chitosan-derived carbon membranes for efficient and stable electro-synthesis of H2O2. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2025.185001

Zhu, Y. (2025). An ultrathin Al2O3 ceramic membrane prepared by organic-inorganic blending with solvent evaporation and high-temperature sintering for highly efficient oil/water separation. Journal of Water Process Engineering. https://doi.org/10.1016/j.jwpe.2025.107116

Zhu, Y. (2025). Conductive carbon/Al2O3 mixed-matrix membrane cathode for efficient electrocatalytic production of H2O2. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2025.134120

Zhu, Y. (2025). Continuous flow-through electro-Fenton membrane reactor with Fe–N4-doped carbon membrane as cathode for efficient removal of dimethylacetamide. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2024.129290

Zhu, Y. (2025). Electrochemical reactor with carbon membrane electrodes for efficient phenol removal via anode and cathode synergism. NPJ Clean Water. https://doi.org/10.1038/s41545-024-00432-4