Ashish Gome | Chemical Engineering | Best Academic Researcher Award | 13632

Dr. Ashish Gome | Chemical Engineering | Best Academic Researcher Award 

Prashanti Group of Institutes |  India 

Dr. Ashish Gome, Associate Professor and Dean (Academics & Administration) at Prashanti Group of Institutes, Ujjain (M.P.), has over 16 years of rich academic and professional experience spanning roles as Head of Department, Dean of External Affairs, and Dean of Academics & Administration. He brings more than six years of industrial experience as an Environmental Consultant, guiding multiple UG and PG student projects. His research focuses on chemical engineering, wastewater treatment, and advanced oxidation processes, particularly the treatment of real pharmaceutical industry wastewater. Dr. Gome has published impactful research in indexed journals, including Springer’s International Journal of Environmental Science and Technology (IJEST), ISCA journals, International Journal of Advances in Research (IJAR), and Pollution Research. His work is highly cited, providing a strong contribution to the understanding of industrial wastewater treatment with practical relevance. According to citation databases, his publications have achieved Substantial citations, and his h-index reflects his growing influence in the field. He serves as an editorial member for the International Journal of Advances in Engineering & Scientific Research. He is a lifetime member of the International Society for Research & Development, highlighting his active engagement in professional communities. Dr. Gome’s research uniquely involves the careful collection and treatment of real wastewater samples from pharmaceutical industries, analyzed under stringent conditions at the MP Pollution Control Board Regional Office. This ensures authenticity and practical applicability of his findings. His studies demonstrate significant potential for pollution load reduction and sustainable industrial practices. While his research collaborations and patents are currently limited, his publications and editorial contributions illustrate a consistent commitment to advancing knowledge. His consultancy experience enriches his academic insight, connecting theoretical work with industrial practice. Dr. Gome’s work has been widely recognized for rigor, precision, and real-world relevance, making him a strong candidate for awards in environmental engineering and chemical process innovation. His mentorship of students ensures knowledge transfer and the cultivation of future researchers. His research outputs align with global sustainability goals and demonstrate notable societal impact. The combination of publications, citations, and h-index underscores his research credibility and thought leadership. He continues to innovate within advanced oxidation processes and wastewater treatment technologies. The practical implications of his studies extend to environmental management and policy implementation.

Profile: Orcid

 

Featured Publications

“Removal of persistent chemical oxygen demand from pharmaceutical wastewater by ozonation at different pH”.

“Simulation study of phenol degradation by Fenton process using ASPEN-Plus”.

“Chemical kinetics of ozonation and other processes used for the treatment of wastewater containing pharmaceuticals: A review”.

“Biodegradability Assessment of Pharmaceutical Wastewater Treated by Ozone”.

 

 

 

 

 

Parvaneh Nakhostin Panahi | Chemical Engineering | Best Researcher Award

Assoc Prof Dr. Parvaneh Nakhostin Panahi | Chemical Engineering | Best Researcher Award

Associate Professor at University of Zanjan, Iran.

Parvaneh Nakhostin Panahi, born in 1980 in Ardebil, Iran, is a prominent figure in Applied Chemistry. She holds a Ph.D. and Master’s degree from the University of Tabriz, specializing in catalysis and environmental applications. Panahi’s research focuses on optimizing nanocatalysts for selective catalytic reduction of NOx, crucial for environmental pollution control. She is affiliated with the Department of Chemistry at the University of Zanjan, Iran, contributing significantly to the advancement of catalytic science for sustainable development.

Professional Profiles:

Education 🎓

Parvaneh Nakhostin Panahi is an accomplished academic in Applied Chemistry, having graduated from the University of Tabriz, Iran. She completed her Bachelor’s degree in Applied Chemistry in 2003, followed by a Master’s degree in 2005, focusing on the impact of organophosphorous compounds on coking rates during naphtha pyrolysis. In 2014, she obtained her Ph.D., researching selective catalytic reduction of NOx using mono and bi-metals nanocatalysts on common supports. Currently based at the University of Zanjan, Iran, she contributes to the Department of Chemistry at the Faculty of Science. Her work underscores a dedication to advancing catalytic technologies for environmental and industrial applications, reflecting her commitment to the field of applied chemistry.

Research

Parvaneh Nakhostin Panahi’s research primarily focuses on catalysis and environmental applications within the field of Applied Chemistry. Her notable contributions include the study of selective catalytic reduction of NOx using nanocatalysts supported on common substrates. This research aims to optimize catalytic systems for enhanced efficiency in reducing nitrogen oxide emissions, crucial for mitigating environmental pollutants. Panahi’s work also explores the design and characterization of mono and bi-metallic nanocatalysts, aiming to improve their performance and durability in industrial applications. Her efforts underscore a commitment to developing sustainable technologies that address critical environmental challenges through innovative catalytic solutions

📚 Publications:

  1. NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM
    • Journal of Industrial and Engineering Chemistry, 2013
    • Citations: 98
  2. Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction: comparison of RSM and ANN techniques
    • Environmental Technology, 2013
    • Citations: 64
  3. Characterization and activity of alkaline earth metals loaded CeO2–MOx (M= Mn, Fe) mixed oxides in catalytic reduction of NO
    • Materials Chemistry and Physics, 2014
    • Citations: 54
  4. Ultrasound-assistant preparation of Cu-SAPO-34 nanocatalyst for selective catalytic reduction of NO by NH3
    • Journal of Environmental Sciences, 2015
    • Citations: 53
  5. Optimization of Cu/activated carbon catalyst in low-temperature selective catalytic reduction of NO process using response surface methodology
    • Journal of Environmental Science and Health, Part A, 2013
    • Citations: 37
  6. Photocatalytic activity of cation (Mn) and anion (N) substitution in LaCoO3 nanoperovskite under visible light
    • Rare Metals, 2020
    • Citations: 33
  7. Comparative study of ZSM‐5 supported transition metal (Cu, Mn, Co, and Fe) nanocatalysts in the selective catalytic reduction of NO with NH3
    • Environmental Progress & Sustainable Energy, 2017
    • Citations: 32
  8. A modelling study and optimization of catalytic reduction of NO over CeO2–MnOx (0.25)–Ba mixed oxide catalyst using design of experiments
    • Environmental Technology, 2014
    • Citations: 29
  9. Simulation of methanol synthesis from synthesis gas in fixed bed catalytic reactor using mathematical modeling and neural networks
    • International Journal of Scientific & Engineering Research, 2012
    • Citations: 29