Wenyuan Fang | Chemical Engineering | Best Researcher Award

Assist Prof Dr. Wenyuan Fang | Chemical Engineering | Best Researcher Award 

Jining Medical University | China

Dr. Wenyuan Fang is a dedicated researcher and academic in the field of pharmaceutical sciences, with a strong specialization in glycoengineering, functional oligosaccharides, and glycopeptide drug development. Fang research contributions demonstrate a significant commitment to advancing innovative strategies for the synthesis, design, and pharmacological evaluation of bioactive oligosaccharides and glycopeptide-based therapeutics. Over the years, Fang has built a solid body of work that integrates organic synthesis, enzymatic methodologies, glycosylation mechanisms, and functional material applications. This multidisciplinary approach has enabled to contribute meaningfully to drug discovery, targeted drug delivery, and the development of functional biomaterials. Her research focuses on several key areas, including the development of novel drug candidates derived from bioactive oligosaccharides, advanced chemoenzymatic synthesis strategies, the study of glycopeptide function, pharmacodynamic analysis of peptide drugs, glycan functional materials, and delivery systems for therapeutic peptides. Fang scholarly output includes publications in highly regarded journals such as Biotechnology Advances, Biomolecules, Chemistry – A European Journal, Chinese Journal of Chemistry, Journal of Materials Chemistry A, and Journal of Materials Science. These works reflect both depth and innovation, with several papers recognized as cover features or frontispieces, highlighting their scientific importance and impact. Fang contributions to oligosaccharide synthesis—particularly rapid enzymatic assembly, functional membrane development, and advanced material fabrication—demonstrate ability to bridge traditional pharmaceutical sciences with material chemistry and biomolecular engineering. Fang’s recent publications also showcase progress in the chemoenzymatic construction of human blood group antigens and the development of synthetic strategies for bioactive oligosaccharides, reinforcing the expertise in glycoscience and its translational potential. Fang has participated in funded research projects, including those supported by regional science foundations, contributing to the advancement of drug development technologies and the understanding of glycan structure–function relationships. Beyond research, Fang’s academic involvement includes collaboration with multidisciplinary teams, fostering an environment of scientific exchange and innovation. Wenyuan Fang work supports the development of next-generation therapeutic strategies and holds strong potential for real-world applications in pharmaceutical formulation, biomaterials, and biomedical research. Through consistent scholarly engagement, innovative project involvement, and contributions to scientific literature, Wenyuan Fang exemplifies a strong commitment to advancing pharmaceutical and glycoengineering research. Fang achievements reflect not only scientific rigor but also the potential to influence future developments in drug design, therapeutic delivery, and functional biomaterial innovation.

Citation Metrics (Scopus)

500
400
300
200
100
50
30
10
0

Citations
314

Documents
7

h-index
6

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Cai Xiaolong | Chemical Engineering | Research Excellence Award

Mr. Cai Xiaolong | Chemical Engineering | Research Excellence Award 

YuLin University | China

Mr. Cai Xiaolong (also cited as Cai Xiaolin) is an emerging researcher in materials science and photocatalysis, with a primary affiliation at the College of New Energy and the College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China. His work focuses on the design, synthesis, and optimization of advanced semiconductor photocatalysts for sustainable energy conversion and environmental applications — especially solar-driven CO₂ reduction and related redox reactions using visible light. A central theme in Mr. Cai’s research is the controllable synthesis and structural modulation of bismuth-based photocatalytic materials, with particular emphasis on bismuth oxybromide (Bi₄O₅Br₂) and other Bi-oxyhalide phases. These layered semiconductor compounds are of interest because their tunable band structures and internal electric fields can enhance the generation and separation of photogenerated charge carriers under visible light irradiation — properties that are key to efficient photocatalysis. MDPI In his recently published work, Mr. Cai led efforts to develop hydrothermal synthesis strategies that manipulate precursor chemistry — such as the Bi:Br molar ratio and solution pH — to achieve controlled formation of Bi₄O₅Br₂, BiOBr, and Bi₅O₇Br phases with varied morphologies and photocatalytic performance. This research demonstrates how careful tuning of synthesis parameters can yield materials with improved light absorption, tailored morphologies (e.g., microspheres, polyhedrons), and enhanced performance in the photocatalytic reduction of CO₂ to CO. Among the synthesized catalysts, certain Bi₄O₅Br₂ structures achieved record rates of CO production and competitive selectivity under visible-light conditions, illustrating the potential of phase-engineered bismuth oxybromides for solar fuel generation. MDPI Mr. Cai’s contributions extend to understanding how intrinsic material properties such as band gap, charge separation efficiency, and surface adsorption behavior impact photocatalytic pathways. His approach integrates materials chemistry, advanced structural characterization, and catalytic testing, aiming to bridge fundamental insights with application-oriented outcomes. As part of a wider research community exploring Bi-rich oxyhalides, related strategies include heterojunction construction, dopant engineering, and oxygen-vacancy modulation — all intended to further enhance visible-light activity and product specificity. RSC Publishing Overall, Mr. Cai Xiaolong’s work contributes to the development of next-generation photocatalytic materials that address global challenges in carbon utilization and renewable energy, positioning him as a notable scholar in photocatalytic CO₂ conversion and sustainable materials design.

Citation Metrics (Scopus)

  500
  400
  300
  200
  100
    50
    40
    30
    20
    10
      0

Citations
460

Documents
29

h-index
15

Citations

Documents

h-index


View Scopus Profile

Featured Publications

Wenxiu Cao | Chemical Engineering | Women Researcher Award

Assoc Prof Dr. Wenxiu Cao | Chemical Engineering | Women Researcher Award

Hunan City University | China

Assoc prof. Wenxiu Cao is an emerging researcher at the Key Laboratory of Low Carbon and Environmental Functional Materials of Hunan Province, working within the College of Materials and Chemical Engineering at Hunan City University, Yiyang, China. His work aligns with some of the most rapidly advancing fields in materials science, environmental chemistry, and sustainable technology innovation. As part of a leading research group focused on low-carbon and environmentally functional materials, Wenxiu Cao contributes to addressing global challenges related to energy efficiency, pollution control, and ecological sustainability through advanced material design and chemical engineering approaches. At Hunan City University, his research environment supports interdisciplinary collaboration, allowing him to investigate the development, characterization, and application of innovative materials with environmental benefits. His work often intersects with cutting-edge themes such as low-carbon technologies, photocatalytic and electrocatalytic systems, adsorption-based purification processes, nanostructured functional materials, and green chemical engineering. Through these areas, he contributes to solving real-world environmental issues connected to industrial emissions, renewable energy conversion, wastewater treatment, and sustainable manufacturing. His role at the Key Laboratory also involves contributing to scientific initiatives dedicated to reducing environmental footprints and developing functional materials capable of improving air and water quality. As an active researcher, Wenxiu Cao participates in experimental design, synthesis and fabrication of advanced materials, performance optimization, and analytical characterization using modern instrumental techniques. His work supports the creation of environmentally friendly material systems with high stability, efficiency, and applicability across industrial and environmental sectors. He also engages in scientific writing, data analysis, and academic collaboration, contributing to publications, laboratory innovation, and the knowledge exchange within his department and the broader scientific community. Being part of a provincial-level key laboratory places him at the center of technological advancement in Hunan Province, where research outcomes are expected to support China’s broader goals in carbon neutrality, sustainable development, and green transformation. His contributions help advance the mission of the College of Materials and Chemical Engineering by fostering high-impact research, contributing to student training, and strengthening the university’s academic profile. Through his ongoing work, Wenxiu Cao continues to build a promising research career focused on sustainable materials, environmental protection technologies, and innovations that support a cleaner, greener, and more resilient future. His dedication to advancing low-carbon material science highlights his commitment to both academic excellence and societal benefit.

Profile: Orcid

Featured Publications

Chen, J., Cao, W., Xu, S., Liu, L., Tang, H., Hu, N., & Zhang, W. (2025). Disaccharide/UiO-66(Zr) composites for selective dye adsorption: Synergistic mechanisms. Journal of Chromatography A, 2025(11), Article 466568.

Fu, S., Wang, F., Chen, X., Cao, W., Wang, L., & Tang, Y. (2025). Mechanism of synergistic Ce–Mn catalysis for one-step highly selective cyclohexane oxidation to KA-oil. Industrial & Engineering Chemistry Research, 2025(10-29).

Cao, W., Yuan, B., Zhuo, O., Li, Y., & Luo, W. (2022). Selective adsorption of CO₂/N₂ promoted by polar ligand functional groups of metal–organic frameworks. Journal of Porous Materials, 29(2), 1–12 (if page numbers unavailable, omit).

 

Yuxuan Zhu | Chemical Engineering | Best Researcher Award

Dr. Yuxuan Zhu | Chemical Engineering | Best Researcher Award

The Institute of Seawater Desalination and Multipurpose Utilization | China

Dr. Zhu Yuxuan is a dedicated and highly motivated researcher in Materials Science and Engineering, specializing in materials chemistry and electrocatalytic membrane water treatment. Currently pursuing a PhD at Tiangong University (2021–2025), a Double First-Class institution, she focuses on the development of nano conductive carbon membranes and advanced solutions for industrial wastewater purification. Her doctoral work builds upon her strong foundation from both her Master’s (2018–2021) and Bachelor’s (2014–2018) degrees in Materials Science at Shandong Jianzhu University, where she gained extensive expertise in inorganic chemistry, solid-state physics, material testing, functional inorganic materials, and nanomaterials. Throughout her academic journey, she has engaged in impactful scientific research projects, including contributions to the Jiangxi Provincial Key R&D Program and the National Key R&D Program, where she played a crucial role in developing innovative electrochemically enhanced membrane separation methodologies, leading research teams, coordinating project milestones, and preparing comprehensive technical reports. Zhu Yuxuan has demonstrated exceptional scholarly productivity, having published nine first-author papers in respected journals such as Chemical Engineering Journal (IF 13.4), Separation and Purification Technology (IF 8.2), Journal of Environmental Chemical Engineering (IF 7.4), Journal of Alloys and Compounds, and others across Q1 and core-indexed journals. In addition to her strong publication record, she has contributed to five authorized patents, covering innovations in porous carbon composite materials, supercapacitor electrode materials, mesoporous carbon-metal oxide composites, and laboratory equipment design, reflecting both scientific ingenuity and practical engineering capability. Her research excellence has earned her numerous awards, including the Excellent Report Award at the Beijing-Tianjin-Hebei Membrane Forum (2024), university scholarships, and multiple provincial-level recognitions in academic competitions such as the “Internet+,” “Challenge Cup,” and energy conservation contests. Beyond her scientific achievements, she has held several leadership positions, including Chairman of the College Student Union and active member of the University Association for Science and Technology, earning distinctions as an Excellent Student Cadre and Outstanding Graduate Student in Social Practice. She possesses strong technical skills, including computational simulation (MS simulation, molecular dynamics) and proficiency in advanced characterization techniques such as SEM, IR spectroscopy, LC-MS, UV spectroscopy, electrochemistry, and Raman spectroscopy. With a robust academic background, extensive research experience, and a proven record of innovation, Zhu Yuxuan continues to make significant contributions to the fields of materials chemistry, electrocatalysis, and environmental water treatment.

Profiles: Scopus | Orcid

Featured Publications

Zhu, Y. (2026). Mediation of superoxide radicals enhances the efficient degradation of dimethylacetamide in continuous flow-through three-dimensional electrochemical membrane reactor. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2025.135619

Zhu, Y. (2025, December). B–N bond-mediated boron-doped chitosan-derived carbon membranes for efficient and stable electro-synthesis of H2O2. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2025.185001

Zhu, Y. (2025). An ultrathin Al2O3 ceramic membrane prepared by organic-inorganic blending with solvent evaporation and high-temperature sintering for highly efficient oil/water separation. Journal of Water Process Engineering. https://doi.org/10.1016/j.jwpe.2025.107116

Zhu, Y. (2025). Conductive carbon/Al2O3 mixed-matrix membrane cathode for efficient electrocatalytic production of H2O2. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2025.134120

Zhu, Y. (2025). Continuous flow-through electro-Fenton membrane reactor with Fe–N4-doped carbon membrane as cathode for efficient removal of dimethylacetamide. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2024.129290

Zhu, Y. (2025). Electrochemical reactor with carbon membrane electrodes for efficient phenol removal via anode and cathode synergism. NPJ Clean Water. https://doi.org/10.1038/s41545-024-00432-4

Hengfu Shui | Chemical Engineering | Best Researcher Award | 13551

Prof Dr. Hengfu Shui | Chemical Engineering | Best Researcher Award

Prof Dr. Hengfu Shui, Anhui University of Technology, China

Prof. Dr. Hengfu Shui is a renowned expert in coal chemistry and organic chemical engineering at Anhui University of Technology, China. With a Ph.D. from East China University of Science & Technology, his research spans coal liquefaction, clean utilization, and coal-derived materials. Over his distinguished career, he has served in multiple leadership roles, including Dean of the School of Chemistry & Chemical Engineering and Vice President of the university. Dr. Shui has led and participated in numerous national and international research projects, including NSFC key grants, the 863 and 973 Programs, and Sino-Japanese collaborations. His pioneering work contributes significantly to energy science and chemical engineering.

Author Profile

Scopus

Education

Prof. Dr. Hengfu Shui’s academic journey began with a deep-rooted passion for energy and chemical engineering. In 1983, he entered the East China University of Science & Technology, majoring in Chemical Engineering for Energy Sources. During his undergraduate studies, he explored complex chemical processes, including molecular sieve adsorption and abruption, laying a strong foundation for his future research endeavors. After graduating in 1987, he pursued graduate education at the Anshan Research Institute for Thermal Energy (1990–1992), where he specialized in organic chemical engineering and focused on coal needle coke feedstock preprocessing techniques.

Determined to advance in research, he returned to his alma mater for his doctoral studies (1995–1997), where he developed expertise in solvent deasphalting of residues using mixed C4 solvents and in the modification of paving asphalt — a niche area crucial for the improvement of heavy oil processing and asphalt technology.

Experience

Dr. Hengfu Shui’s academic journey at Anhui University of Technology (AHUT) is a testament to his dedication and leadership in higher education. Beginning his career as a lecturer in 1987, he was promoted to associate professor in 1998 and achieved the rank of full professor by 2002. His administrative acumen and academic vision led him to occupy several key leadership positions within the university, including serving as Dean of the School of Chemistry & Chemical Engineering from 2003 to 2012, Director of the Department of Scientific Research from 2012 to 2017, Dean of the Graduate School from 2017 to 2019, and since 2019, Vice President of AHUT. Complementing his domestic achievements, Dr. Shui also broadened his academic horizons internationally through a prestigious postdoctoral fellowship at Tohoku University in Japan from 2000 to 2002. There, under the mentorship of Professor Iino Masashi, he conducted advanced research on coal structure and its aggregation behavior—critical to improving coal reactivity and conversion efficiency—thereby enhancing both his scientific perspective and international research collaborations.

Research Focus

Prof. Hengfu Shui’s research portfolio is both expansive and deeply impactful, particularly in the field of coal chemistry and clean energy transformation—an area of critical importance within China’s evolving energy and environmental framework. His primary research interests encompass coal liquefaction and clean utilization, coal tar pitch emulsification, coal needle coke production, and the study of coal structure and its aggregation behaviors. These focus areas not only address pressing scientific challenges but also offer practical pathways for optimizing fossil fuel use and minimizing environmental impact. Prof. Shui has led five major research projects funded by the National Natural Science Foundation of China (NSFC), including a key project, and has played a pivotal role in several high-profile national programs such as the 863 High-Tech Program, the 973 National Basic Research Program, and the Strategic Chinese-Japanese Joint Research Program. Additionally, he has contributed to an international cooperative project under Anhui Province. Through these efforts, Prof. Shui has been instrumental in advancing technologies for converting coal into cleaner fuels and high-value chemical products, thus promoting sustainable industrial practices and energy innovation.

His selection as a research fellow at Tohoku University and continued service as vice president of AHUT reflect the high regard in which he is held, both nationally and internationally.

Publications

📘 Enhancing the activity and sulfur tolerance of LaMnO3-based perovskite catalysts for VOCs total oxidation by tuning configurational entropy – Separation and Purification Technology (2025) – Cited by 3 articles.
📘 Temperature regulating the directional catalytic transfer hydrogenolysis of lignin over a in situ topologically prepared NiRu/Al2O3 – Chemical Engineering Science (2025) – Cited by 2 articles.
📘 Relationship between pyrolytic sulfur migration behavior and structural composition of high-sulfur fat coal – Fuel (2025) – Cited by 3 articles
📘 Emerging Photothermal Materials from Lignin and Coal for Solar Vapor Generation – Advanced Functional Materials (2025) – Cited by 3 articles