Mr. Cai Xiaolong | Chemical Engineering | Research Excellence Award
YuLin University | China
Mr. Cai Xiaolong (also cited as Cai Xiaolin) is an emerging researcher in materials science and photocatalysis, with a primary affiliation at the College of New Energy and the College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China. His work focuses on the design, synthesis, and optimization of advanced semiconductor photocatalysts for sustainable energy conversion and environmental applications — especially solar-driven CO₂ reduction and related redox reactions using visible light. A central theme in Mr. Cai’s research is the controllable synthesis and structural modulation of bismuth-based photocatalytic materials, with particular emphasis on bismuth oxybromide (Bi₄O₅Br₂) and other Bi-oxyhalide phases. These layered semiconductor compounds are of interest because their tunable band structures and internal electric fields can enhance the generation and separation of photogenerated charge carriers under visible light irradiation — properties that are key to efficient photocatalysis. MDPI In his recently published work, Mr. Cai led efforts to develop hydrothermal synthesis strategies that manipulate precursor chemistry — such as the Bi:Br molar ratio and solution pH — to achieve controlled formation of Bi₄O₅Br₂, BiOBr, and Bi₅O₇Br phases with varied morphologies and photocatalytic performance. This research demonstrates how careful tuning of synthesis parameters can yield materials with improved light absorption, tailored morphologies (e.g., microspheres, polyhedrons), and enhanced performance in the photocatalytic reduction of CO₂ to CO. Among the synthesized catalysts, certain Bi₄O₅Br₂ structures achieved record rates of CO production and competitive selectivity under visible-light conditions, illustrating the potential of phase-engineered bismuth oxybromides for solar fuel generation. MDPI Mr. Cai’s contributions extend to understanding how intrinsic material properties such as band gap, charge separation efficiency, and surface adsorption behavior impact photocatalytic pathways. His approach integrates materials chemistry, advanced structural characterization, and catalytic testing, aiming to bridge fundamental insights with application-oriented outcomes. As part of a wider research community exploring Bi-rich oxyhalides, related strategies include heterojunction construction, dopant engineering, and oxygen-vacancy modulation — all intended to further enhance visible-light activity and product specificity. RSC Publishing Overall, Mr. Cai Xiaolong’s work contributes to the development of next-generation photocatalytic materials that address global challenges in carbon utilization and renewable energy, positioning him as a notable scholar in photocatalytic CO₂ conversion and sustainable materials design.
460
29
15
Citations
Documents
h-index
Featured Publications
Constructing 2D/2D BiOI/Bi2O2CO3 S-scheme heterojunction for boosted CO2 photoreduction
– Journal of Alloys and Compounds, 2025
Boron-doped ultrathin BiOBr nanosheet promotion for photocatalytic reduction of CO2 into CO
– Journal of Alloys and Compounds, 2025
Study of the growth kinetics of in situ WC grains in tungsten carbide layers produced by a diffusion-controlled reaction
– Ceramics International, 2022
Room-temperature wear resistance of tungsten carbide composite layers produced on grey cast iron by diffusion-controlled in situ reactions
– Surface and Coatings Technology, 2021