Shohei Katsuya | Biology and Life Sciences | Excellence in Research Award

Mr. Shohei Katsuya | Biology and Life Sciences | Excellence in Research Award

OSAKA GAS Co., Ltd. | Japan

Mr. Shohei Katsuya is a dedicated Researcher at the Advanced Technology Research Institute of Osaka Gas Co., Ltd., where he has been contributing to cutting-edge scientific advancements since April 2021. He holds a Master of Agriculture degree from Kyoto University, earned in March 2021, and has since developed a strong research focus on the physiological functions of beta-hydroxybutyrate (BHB). His work revolves around understanding how BHB influences metabolic regulation, ketone body pathways, and physiological responses related to obesity and visceral fat accumulation. As metabolic disorders continue to rise globally, his research addresses critical scientific questions with direct implications for human health, nutrition, and disease prevention. Shohei has played an active role in developing nutritional strategies aimed at improving metabolic outcomes, collaborating with academic institutions, and supporting multidisciplinary projects that advance metabolic health science. Between 2023 and 2025, Shohei has authored five peer-reviewed publications in reputable international journals, including Obesities, Journal of Nutritional Science and Vitaminology, Bioscience, Biotechnology, and Biochemistry, and Nutrition. These publications collectively reflect his commitment to scientific rigor and his growing influence in the fields of nutritional science and metabolic physiology. His research output has received 18 citations to date, according to Scopus metrics (as of November 2025), and his current h-index of 2 indicates early yet solid scholarly impact within a short timeframe. His contributions provide valuable insights into ketone-body-driven metabolic pathways, opening possibilities for new therapeutic and dietary approaches. Shohei’s research activities align strongly with the mission of advancing evidence-based nutrition and metabolic science, demonstrating originality, societal relevance, and a high level of research integrity. His projects emphasize translational potential—particularly in dietary interventions for visceral fat reduction—and reflect an understanding of both biochemical mechanisms and practical applications for health improvement. Through continuous collaboration with academic partners, Shohei has strengthened his ability to transform scientific concepts into meaningful innovations that address modern health challenges. His commitment to excellence, ethical research practice, and impactful scientific contribution make him a strong candidate for the Excellence in Research Award. Shohei declares that all information provided in this application is accurate and authentic to the best of his knowledge, and he remains fully committed to upholding the values and standards of the International Research Awards.

Profiles: Scopus | Orcid

Featured Publications

Aisyah, R., Katsuya, S., Miyata, K., Chen, Z., Horii, M., Kudo, A., Kumrungsee, T., Tsubota, J., & Yanaka, N. (2025). β-hydroxybutyrate attenuates diabetic renal and muscular pathologies in a streptozotocin-induced diabetic model. Nutrition, 112792. https://doi.org/10.1016/j.nut.2025.112792

Katsuya, S., Kawata, Y., Kawamura, Y., Kawamura, J., & Tsubota, J. (2025). Effect of d-β-hydroxybutyrate on sleep quality in healthy participants: A randomized, double-blind, placebo-controlled study. Bioscience, Biotechnology, and Biochemistry. https://doi.org/10.1093/bbb/zbaf017

Katsuya, S., Kawata, Y., Sugimoto, M., Nishimura, T., & Tsubota, J. (2024). Determination of the safety of Halomonas sp. KM-1-derived d-β-hydroxybutyric acid and its fermentation-derived impurities in mice and Japanese adults. Bioscience, Biotechnology, and Biochemistry. https://doi.org/10.1093/bbb/zbae088

Ip, C.-H., Higuchi, H., Wu, C.-Y., Okuda, T., Katsuya, S., Ogawa, J., & Ando, A. (2024). Production of docosahexaenoic acid by a novel isolated Aurantiochytrium sp. 6-2 using fermented defatted soybean as a nitrogen source for sustainable fish feed development. Bioscience, Biotechnology, and Biochemistry. https://doi.org/10.1093/bbb/zbae035

Katsuya, S., Kawata, Y., Goto, T., & Tsubota, J. (2023). Daily intake of D-β-hydroxybutyric acid (D-BHB) reduces body fat in Japanese adult participants: A randomized, double-blind, placebo-controlled study. Journal of Nutritional Science and Vitaminology, 69(2), 121–129. https://doi.org/10.3177/jnsv.69.121

Wei Liu | Chemical Engineering | Best Researcher Award

Dr. Wei Liu | Chemical Engineering | Best Researcher Award

University of Jinan | China

Dr. Wei Liu is a dedicated researcher and lecturer at the Institute of Smart Materials and Engineering, University of Jinan, China. He obtained his Ph.D. in 2019 from the Huazhong University of Science and Technology, following his master’s and bachelor’s degrees from Qingdao University of Science and Technology in 2014 and 2011, respectively. Since joining the University of Jinan in 2019, Dr. Liu has actively contributed to both teaching and research, guiding seven master’s students and delivering core courses such as Organic Chemistry. In parallel, he has pursued postdoctoral research (2022–2025) while engaging as a special correspondent for the Shandong Province enterprise science and technology program, bridging academia and industrial innovation. Dr. Liu’s research primarily focuses on high-efficiency deep blue organic light-emitting diodes (OLEDs), the design and synthesis of rare-earth-based light conversion materials, and the crystal engineering of organic molecules, including polymorphs and co-crystals. His work aims to enhance the performance, efficiency, and sustainability of optoelectronic and photonic materials, with applications in advanced lighting, display technologies, and agriculture. He has led and participated in multiple scientific research projects, including the Science and Technology Program of the University of Jinan (as project leader), major university and provincial development programs, and industrial pilot studies on agricultural light conversion agents. A prolific scholar, Dr. Liu has authored or co-authored over 50 research publications in leading international journals such as Science Bulletin, Chemical Communications, Journal of Materials Chemistry C, Dyes and Pigments, Ceramics International, and Nanomaterials. His notable studies include the development of Bi³⁺/Eu³⁺ co-doped phosphors for tunable light emission, non-doped sky-blue fluorescent OLEDs based on novel anthracene derivatives, and advanced photoluminescent materials for plant growth applications. His collaborative research on deep blue anthracene-based luminogens, published in Science Bulletin, has drawn attention for achieving exceptional efficiency and stability in OLED devices. Dr. Liu’s scientific achievements have been recognized with multiple honors, including the First Prize for Outstanding Scientific Research Achievement Award of Shandong Universities (2014), the First Prize of Science and Technology Award of Shandong University (2016), and the Excellent Master’s Thesis Award of Shandong Province (2015). In addition to journal publications, he holds patents such as An anthracene-based deep blue organic luminescent material with high efficiency and low roll-off (CN 111303009 B) and an international patent for a diketopyrrolopyrrole-based red light conversion agent (South Africa No. 2023/00481). Through his interdisciplinary research that integrates chemistry, materials science, and photonic engineering, Dr. Liu is advancing the development of next-generation luminescent materials and agricultural phototechnology. His ongoing projects aim to improve light utilization efficiency in both electronic and ecological systems, promoting sustainable solutions for modern energy and environmental challenges. As an educator and innovator, he continues to mentor young scientists and contribute to China’s strategic development in smart materials and optoelectronic technology.

Profiles: Scopus | Orcid

Featured Publications

Liu, M., Yang, C., Liu, W., Zhou, X., Liu, S., You, Q., & Jiang, X. (2024). Synthesis of Bi³⁺ and Eu³⁺ co-doped Na₄CaSi₃O₉ blue-red light tunable emission phosphors for inducing plant growth. Ceramics International, 50, 9058–9069.

Lu, X., Liu, W., Kang, Z., Yang, C., Nie, Y., & Jiang, X. (2023). Efficient non-doped sky-blue fluorescent organic light emitting devices based on cyanopyridine-containing anthracene derivatives. Dyes and Pigments, 220, 111712.

Yang, C., Liu, W., You, Q., Zhao, X., Liu, S., Xue, L., Sun, J., & Jiang, X. (2023). Recent advances in light-conversion phosphors for plant growth and strategies for the modulation of photoluminescence properties. Nanomaterials, 13, 1715.

Guo, R., Liu, W., Ma, D., & Wang, L. (2021). Exceptionally efficient deep blue anthracene-based luminogens: Design, synthesis, photophysical, and electroluminescent mechanisms. Science Bulletin, 66, 2090–2098. https://doi.org/10.1016/j.scib.2021.02.021

Liu, W., & Yang, W. (2013). Alkoxy-position effects on piezofluorochromism and aggregation-induced emission of 9,10-bis(alkoxystyryl)anthracenes. Chemical Communications, 49, 6042–6044.

Liu, W., & Yang, W. (2014). 2,6,9,10-Tetra(p-dibutylaminostyryl)-anthracene as a multifunctional fluorescent cruciform dye. Journal of Materials Chemistry C, 2, 9028–9034.