Tianwei He | Chemistry and Materials Science | Best Researcher Award

Prof Dr. Tianwei He | Chemistry and Materials Science | Best Researcher Award 

Yunnan University | China

Dr. Tianwei He is an internationally recognized materials scientist and computational chemist whose research advances the rational discovery and design of next-generation electrocatalysts for sustainable energy and chemical transformations. He is currently an Associate Professor at the School of Materials and Energy, Yunnan University, China, where he leads cutting-edge research at the intersection of density functional theory (DFT), nanocatalysis, and machine learning. His academic training and professional trajectory span leading institutions in China, Australia, Germany, and Macau, reflecting a strong global research footprint. Dr. He obtained his PhD in Computational Materials Science from Queensland University of Technology (QUT), Australia, following earlier degrees in Materials Science and Engineering. He subsequently held postdoctoral and assistant researcher positions at the Fritz Haber Institute of the Max Planck Society (Germany), University of Macau, and Queensland University of Technology, working under renowned scholars including Prof. Karsten Reuter, Prof. Hui Pan, and Prof. Aijun Du. These experiences shaped his expertise in theoretical catalysis, surface science, and reaction mechanism modeling. His research focuses on the computational discovery of novel nanocatalysts for key electrochemical and photocatalytic reactions within the C, N, O, and H cycles, including HER, OER, ORR, nitrogen reduction, CO/CO₂ reduction, and selective hydrogenation. By constructing structure- and composition-sensitive models using DFT, NEB, and molecular dynamics, Dr. He provides atomic-level insights into active sites, scaling relationships, and reaction pathways. In recent years, he has integrated machine learning approaches to accelerate catalyst screening and performance prediction. Dr. He has authored and co-authored an extensive body of high-impact publications in premier journals such as Journal of the American Chemical Society, PNAS, Chem, Advanced Materials, Advanced Energy Materials, Chemical Society Reviews, ACS Catalysis, and Small. With an h-index of 38, over 4,900 citations, and multiple ESI Highly Cited and Hot Papers, his work is widely recognized for its originality and influence in the catalysis community. His studies on single-atom catalysts, heteronuclear dual-atom systems, high-entropy catalysts, and low-dimensional heterostructures have significantly advanced understanding of catalytic stability, selectivity, and efficiency. In addition to research, Dr. He actively contributes to the scientific community as an invited reviewer for leading journals and as a member of early-career editorial boards for Materials Today Energy, Battery Energy, and Journal of Electrochemistry. Through sustained excellence in research, mentorship, and international collaboration, Dr. Tianwei He continues to play a pivotal role in shaping the future of computational catalysis and sustainable energy materials.

Citation Metrics (Google Scholar)

6000
5000
4000
3000
2000
1000
500
400
300
200
100
50
0

Citations
5020

Documents
30

h-index
38

Citations

Documents

h-index

View Google Scholar Profile

Featured Publications

Kaiqi Fan | Chemistry | Best Researcher Award

Assoc Prof Dr. Kaiqi Fan | Chemistry | Best Researcher Award 

Assoc Prof Dr. Kaiqi Fan | Zhengzhou University of Light Industry | China

Assoc. Prof. Dr. Kaiqi Fan, a distinguished researcher at Zhengzhou University of Light Industry, China, specializes in polymers, supramolecular chemistry, co-crystalline gels, and hydrogels. He has led multiple provincial-level science and technology projects, secured several invention patents, and published impactful papers in leading journals such as Chemical Engineering Journal and Journal of Colloid and Interface Science. His pioneering work on asymmetric-adhesion Janus hydrogels has advanced medical interface technologies, enabling improved continuous ultrasound Doppler monitoring. Dr. Fan’s research integrates innovation, material design, and practical applications, significantly contributing to the development of advanced functional materials with biomedical and industrial relevance.

Author Profile

Scopus

Education

Assoc. Prof. Dr. Kaiqi Fan’s academic journey began with a strong foundation in chemistry and materials science, where his early education nurtured a passion for understanding molecular interactions and functional materials. His curiosity for polymers and supramolecular assemblies developed during his higher education years, leading him to focus on designing advanced materials with tailored properties. Driven by a desire to merge fundamental chemistry with practical applications, Dr. Fan excelled in both theoretical understanding and laboratory experimentation. This early dedication provided the groundwork for his later breakthroughs in hydrogels, ionic elastomers, and co-crystalline gels, ensuring that his career would be deeply rooted in innovation and scientific rigor.

Experience

Currently serving as an Associate Professor at Zhengzhou University of Light Industry, Dr. Fan plays a vital role in advancing polymer science research while mentoring the next generation of scientists. He has successfully led multiple provincial-level science and technology projects in Henan Province, each addressing real-world challenges through advanced material design. His expertise extends beyond academia into collaborative research with industrial partners, translating laboratory findings into practical solutions. Moreover, Dr. Fan has contributed significantly to scientific literature, with publications in prestigious journals such as Chemical Engineering Journal and Journal of Colloid and Interface Science. His academic and professional roles are characterized by a balance of teaching excellence, research leadership, and cross-disciplinary collaboration.

Research Focus

Dr. Fan’s research centers on polymers, supramolecular chemistry, and the design of functional gels with unique mechanical and interfacial properties. Among his most notable contributions is the development of chitosan-integrated asymmetric-adhesion Janus hydrogels via solid–gel interfacial engineering. This innovation addresses the challenge of programmable adhesion asymmetry by introducing a mold-directed solid–gel interface strategy, achieving an 18-fold difference in adhesion strength between the two sides of the hydrogel. The resulting materials not only exhibit exceptional acoustic impedance properties comparable to commercial ultrasound gels but also demonstrate dual-functionality—secure attachment for medical probes and a sliding interface for dynamic tissue interaction. His broader research portfolio includes eutectogel adhesives, self-healing conductive gels, underwater-sensing gels, and low-temperature-resistant hydrogel electrolytes, all contributing to advancements in biomedical devices, sensing technologies, and energy storage systems.

Award and Recognition

Dr. Fan’s pioneering work has been recognized through multiple avenues. He has secured several invention patents, demonstrating his capacity for translating scientific concepts into practical and commercially viable innovations. His research articles have been featured in high-impact journals indexed in SCI and Scopus, earning citations from scholars worldwide. By leading competitive provincial research grants, he has established himself as a trusted innovator in China’s scientific community. These accolades not only highlight his academic excellence but also validate the societal relevance of his research in areas such as medical diagnostics, wearable technology, and sustainable material design.

Impact and Influence

The influence of Dr. Fan’s research extends far beyond the laboratory. His innovations in hydrogel technology have the potential to transform biomedical imaging and monitoring, particularly in continuous ultrasound Doppler measurements, where his designs enhance signal quality and patient comfort. By advancing materials that combine stretchability, self-healing properties, and environmental resilience, his work supports the development of wearable electronics and energy devices that can withstand harsh operating conditions. His contributions are also shaping the next generation of researchers through mentorship, workshops, and collaborative projects, fostering a culture of creativity and scientific curiosity.

Publications 

Janus POSS-based hydrogel electrolytes with high-ionic conductivity and low-temperature-resistance for all-in-one flexible supercapacitors.

Author: Xiaojing Zhang, Luxin Cao, Xiaobo Wang, Zhen Liu, Jiwei Peng, Wentong Yang, Kaiqi Fan
Journal: Journal of Energy Storage
Year: 2025

Eutectogel adhesives with underwater-enhanced adhesion to hydrophilic surfaces and strong adhesion in harsh environments.

Author: Kaiqi Fan, Wentong Yang, Jiwei Peng, Xiaobo Wang, Luxin Cao, Xidong Guan, Haijun Sun, Xiaojing Zhang
Journal: Chemical Engineering Journal
Year: 2024

One-step preparation of highly conductive eutectogel for a flexible strain sensor.

Author: Kaiqi Fan, Jiwei Peng, Wentong Yang, Xiaobo Wang, Sen Liu, Luxin Cao, Haijun Sun, Xiaojing Zhang.
Journal: Applied Polymer Science
Year: 2024

Conclusion

Assoc. Prof. Dr. Kaiqi Fan exemplifies the ideal blend of scientific curiosity, technical mastery, and practical innovation. From his early academic foundation in polymer and supramolecular chemistry to his groundbreaking work on asymmetric-adhesion Janus hydrogels and advanced functional materials, he has consistently pushed the boundaries of materials science. His patents, publications, and leadership in provincial research projects demonstrate both academic excellence and societal impact. Beyond his personal achievements, Dr. Fan’s mentorship and collaborations are cultivating the next generation of researchers. With a vision firmly set on solving real-world challenges, his legacy will continue to inspire innovation and shape the future of advanced material technologies.

Pibo Liu | Chemistry | Best Researcher Award | 13553

Assoc Prof Dr. Pibo Liu | Chemistry | Best Researcher Award

Assoc Prof Dr. Pibo Liu, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China

Assoc. Prof. Dr. Pibo Liu, from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, is a distinguished polymer chemist known for his pioneering work in precision polymerization. With a Ph.D. in Polymer Science and postdoctoral training at KAUST, he has advanced the field through the development of novel catalysts and functional materials. His research on rare-earth and Lewis acid catalysts has led to significant innovations in elastomer and fluorosilicone synthesis. With 38 SCI-indexed publications, 11 patents (4 granted), and active international collaborations, Dr. Liu’s contributions continue to shape the future of high-performance polymer materials.

Author Profile

Scopus

Education

Dr. Pibo Liu began his academic journey with a strong foundation in polymer science, earning his Ph.D. from Dalian University of Technology, one of China’s most reputable institutions for materials and chemical engineering. During his formative years, he demonstrated a keen interest in macromolecular chemistry and polymer architecture, distinguishing himself through a meticulous approach to scientific inquiry. His doctoral research laid the groundwork for a career dedicated to precision polymerization techniques, emphasizing innovation, scalability, and structural control.

Building upon this robust academic background, Dr. Liu pursued a postdoctoral fellowship at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. Under the mentorship of renowned polymer scientist Professor Nikos Hadjichristidis, he honed his expertise in advanced polymer synthesis methodologies. This international exposure deepened his scientific perspective, provided access to world-class research facilities, and helped establish his identity in the global polymer research community.

Experience

Dr. Liu currently serves as an Associate Professor at the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, where he leads several cutting-edge research projects. His professional trajectory reflects a harmonious blend of academic excellence and applied innovation. At DICP, Dr. Liu heads two major projects: one funded by the National Natural Science Foundation of China (Youth Program) and another under the Youth Innovation Program of the institute.

He has successfully completed three industry projects and is presently engaged in an ongoing corporate partnership, demonstrating his ability to translate academic research into practical industrial solutions. His contributions to academia and industry exemplify a dual commitment to theoretical advancements and technological applicability.

Research Focus

Dr. Liu’s research focuses on the design and development of novel polymerization techniques aimed at producing high-performance, specialty elastomer materials. He has made significant breakthroughs in catalytic polymer chemistry, particularly in the following areas:

  1. ⚙️ Rare-earth catalysts: Developed for controlling monomer sequences in cold-resistant and di-end-functionalized rubbers.

  2. 🌀 Anionic ring-opening polymerization: Devised for creating advanced fluorosilicone rubbers with improved thermal and chemical resistance.

  3. 🧲 Lewis acid catalysts: Enabled the selective ylide polymerization of complex structures like C3 polymers.

His work addresses longstanding challenges in structural control, functionality, and performance of elastomeric materials, offering viable solutions for industries ranging from aerospace to biomedical engineering. These contributions are not only academically valuable but also open pathways for commercial-scale polymer manufacturing.

Award and Recognition

Though early in his career, Dr. Liu’s work has already earned significant recognition. He has:

  • Published 38 peer-reviewed articles in top-tier journals such as Angewandte Chemie International Edition, Macromolecules, ACS Macro Letters, and Polymer Chemistry.

  • Achieved an H-index of 16 with over 569 citations according to Web of Science.

  • Filed 11 patents, out of which 4 have been granted, showcasing the patentable quality and industrial relevance of his work.

Publications

📘 Construction of PDMS-crosslinked tread composites that feature high energy-saving and anti-thermal oxidative performances – Composites Part A Applied Science and Manufacturing (2025) – Cited by 1 article.
📘 Aluminum-Mediated Polymerization of Allylic Ylides toward α,ω-Functionalized C3 Polymers with Enhanced Nontraditional Intrinsic Luminescence – Macromolecules (2024) – Cited by 1 article.
📘 Synthesis of α,ω-End Functionalized Polydienes: Allylic-Bearing Heteroleptic Aluminums for Selective Alkylation and Transalkylation in Coordinative Chain Transfer Polymerization – Angewandte Chemie International Edition (2024) – Cited by 4 articles.