Zong Lu | 2D Materials | Best Researcher Award | 13501

Dr. Zong Lu | 2D Materials | Best Researcher Award

Dr. Zong Lu, South China University of Technology, China

Dr. Zong Lu is a postdoctoral researcher at the South China University of Technology, renowned for his pioneering work on 2D material membranes. His research focuses on the structural modulation and scalable fabrication of advanced MXene-based membranes for selective ion separation, lithium-ion recovery, and hydrogen purification. With over 2,200 citations, his work is widely recognized in high-impact journals like Angewandte Chemie and ACS Nano. Dr. Lu has significantly advanced techniques such as self-crosslinking and asymmetric amplification, pushing the frontiers of membrane science and clean energy applications.

Author Profile

Scopus

🎓 Early Academic Pursuits

Dr. Zong Lu began his journey into the world of materials science with a strong academic foundation rooted in curiosity and a passion for innovation. From the outset of his education, he exhibited a keen interest in nanomaterials and separation technologies, particularly the fascinating behavior and properties of two-dimensional (2D) materials. His academic path was guided by a vision to engineer functional materials with high performance for real-world applications.

Throughout his undergraduate and graduate studies, Dr. Lu delved deeply into the synthesis, characterization, and application of novel materials, with a growing focus on membrane science. He was particularly drawn to MXenes—a family of 2D transition metal carbides and nitrides—which later became the centerpiece of his research career.

đŸ§Ș Professional Endeavors

Currently serving as a Postdoctoral Researcher at the South China University of Technology, Dr. Lu has firmly established himself in the international research community. He works under the guidance of experienced mentors and in collaboration with distinguished research teams to develop scalable membrane technologies for ion separation, energy purification, and environmental sustainability.

One of his professional goals has been the scalable and precise engineering of MXene-based composite membranes. In pursuit of this, he has developed several structural modulation techniques including self-crosslinking strategies, asymmetric amplification, and large-area electrodeposition. These efforts have enabled real-world applicability of 2D materials in industrial-scale separation technologies.

🔬 Contributions and Research Focus

Dr. Lu’s research revolves around 2D membrane materials, particularly MXene-based membranes used for selective ion rejection and energy-efficient separation. His innovations include:

  • Application of 2D Self-Crosslinked MXene Membranes for enhanced ion exclusion, especially monovalent ions like Liâș and Naâș.

  • Asymmetric Membrane Strategies to achieve superior Kâș/Naâș selectivity, a crucial challenge in lithium resource recovery.

  • Scalable Electrodeposition Techniques for rapid and efficient production of large-area MXene membranes.

  • Composite Membrane Engineering using materials like ZIF-8 and Graphene Oxide for hydrogen purification and CO₂ separation.

With over 10 peer-reviewed publications in top-tier journals such as Angewandte Chemie International Edition, ACS Nano, Chemical Engineering Journal, and AIChE Journal, his contributions have significantly advanced both the science and technology of membrane-based separations.

🏅 Accolades and Recognition

Dr. Lu’s growing influence in the scientific community is reflected by his Google Scholar citation index of 2,204, a testament to the relevance and quality of his research. He is a recipient of the China Postdoctoral Science Foundation (76th batch, General Funding), which supports high-potential researchers in their early career development.

His work has gained traction not only in academic settings but also in industrial and environmental applications—where scalable, efficient separation techniques are critically needed. His collaboration with global experts like Prof. Haihui Wang and Yanying Wei has further solidified his reputation as a rising expert in membrane technologies.

🌍 Impact and Influence

Dr. Lu’s impact spans multiple interdisciplinary fields including nanotechnology, chemical engineering, environmental science, and energy purification. His research on lithium-ion and potassium-ion separation aligns with global demands for sustainable resource recovery, particularly important for the electric vehicle and battery industries.

Additionally, his work on hydrogen purification membranes contributes to the global push toward clean and renewable energy sources. His methods enable scalable and practical applications, moving fundamental research out of the lab and into industry. Through his publications, he has influenced peers and upcoming researchers, offering new strategies for dealing with swelling in 2D membranes and enhancing ion selectivity.

🌟 Legacy and Future Contributions

As a young researcher, Dr. Zong Lu is poised to leave a lasting legacy in membrane science and nanotechnology. His innovative synthesis techniques, combined with his ability to scale laboratory discoveries for industrial application, position him as a leading figure in the next generation of materials scientists.

Looking forward, Dr. Lu aims to expand his research into multifunctional membrane systems for water purification, bio-separation, and energy storage. With his strong interdisciplinary background, mentorship potential, and relentless drive for innovation, he is well on his way to establishing a center of excellence in 2D membrane technologies.

He is also expected to contribute significantly to academic mentorship, international collaboration, and applied research through continued partnerships and grant projects.

✍ Publication Top Notes


📘ZIF-8-MXene/Nylon composite membrane for high-efficiency hydrogen purification

Author: Mide Luo , Yali Zhao , Zong Lu , Yanying Wei

Journal: Membrane Science

Year: 2025


📘Solvent-mediated structural regulation of MXene membranes for H2 purification

Author: Changdie Cao, Yurun Dai, Zhihao Liu, Zong Lu, Mide Luo, Yanying Wei, Haihui Wang

Journal: Chemical Engineering Science

Year: 2025


 

Xiaoyan Song | Cermet materials | Best Researcher Award | 13225

Prof. Dr. Xiaoyan Song | Cermet materials | Best Researcher Award

Prof. Dr. Xiaoyan Song, Beijing University of Technology, China

Professor Xiaoyan Song is a distinguished faculty member at the College of Materials Science and Engineering, Beijing University of Technology. She leads the Metallic Nanomaterials and Computational Materials Science group and serves as the Deputy Director of the Key Laboratory of Advanced Functional Materials under China’s Ministry of Education. Her research focuses on the design, preparation, and characterization of metallic nanomaterials, including rare-earth materials, hard metals, and cermets. She has published over 300 peer-reviewed papers and holds more than 60 authorized patents, some of which have been industrialized into high-grade engineering products. Professor Song has received numerous honors, including the Humboldt Fellowship and the China National Science Fund for Distinguished Young Scholars. She also serves as an Associate Editor for the International Journal of Refractory Metals and Hard Materials.

Profile

Orcid

Scopus

🎓 Early Academic Pursuits

Professor Xiaoyan Song embarked on her academic journey at the University of Science and Technology Beijing, where she earned her Ph.D. in 1999. Her research in materials science began with a strong foundation in metallurgy and advanced composites, laying the groundwork for her future contributions to the field. Her early work was characterized by a keen interest in the microstructural properties of metallic materials, which would later define her professional focus. Following her Ph.D., she expanded her horizons internationally, securing a prestigious Humboldt Fellowship to conduct postdoctoral research at Darmstadt University of Technology in Germany from 2000 to 2003. This experience provided her with advanced training in computational materials science and experimental analysis, equipping her with a unique interdisciplinary skill set that would become invaluable in her later work.

đŸ’Œ Professional Endeavors

Upon completing her research in Germany, Prof. Song returned to China and joined the College of Materials Science and Engineering at Beijing University of Technology. She swiftly rose through the ranks, becoming a leading figure in the institution. Today, she serves as the Leader of the Hard Metals and Refractory-Metal Based Composites Group. Additionally, she holds the esteemed position of Director of the Key Laboratory of Advanced Functional Materials under the Ministry of Education in China. Her work is pivotal in driving innovation in the development and application of hard metals, tungsten-based composites, and refractory high-entropy alloys. Her group integrates experimental techniques with computational materials science to push the boundaries of material durability, wear resistance, and mechanical performance.

🌟 Contributions and Research Focus

Prof. Song’s research revolves around the design, development, and optimization of advanced metallic materials. Her expertise lies in WC-based hard metals, W-based composites, and refractory high-entropy alloys. Her innovative approach includes:

  • Microstructural Analysis: Investigating the relationship between microstructure and material properties, leading to enhanced performance characteristics.
  • Computational Materials Science: Employing advanced simulations to predict material behaviors and optimize compositions before experimental synthesis.
  • Industrial Applications: Translating laboratory discoveries into real-world engineering applications, including cemented tungsten carbides with superior strength, toughness, wear resistance, and corrosion resistance. Her contributions have led to over 380 peer-reviewed publications and more than 90 authorized patents, several of which have been successfully industrialized. The high-performance tungsten carbide materials developed by her team are now mass-produced and widely applied in high-end engineering sectors, demonstrating her commitment to both academic excellence and industrial impact.

🏆 Accolades and Recognition

Prof. Song’s outstanding contributions to materials science have been recognized with numerous prestigious awards and honors:

  • China National Science Fund for Distinguished Young Scholars, a testament to her leadership in scientific research.
  • First Prize of Provincial Science and Technology Progress Award, highlighting her pioneering work in material innovation.
  • Second Prize of Municipal Natural Science and Technology Award (four times), acknowledging her consistent contributions to advancing materials science. Her recognition extends beyond China, with international academic societies and journals seeking her expertise. Since 2013, she has served as the Associate Editor of the International Journal of Refractory Metals and Hard Materials. In 2024, she was elevated to the role of Co-Editor-in-Chief, reinforcing her status as a global leader in her field.

Publication Top Notes

Seeding ductile nanophase in ceramic grains

Contributors: Chong Zhao; Hao Lu; Haibin Wang; Xuemei Liu; Zhigang Zak Fang; Chao Hou; Xiaoyan Song
Journal: Materials Horizons
Year: 2024
Journal: RSC Advances
Year: 2024
Contributors: Zhi Zhao; Xiaotong Zheng; Yurong Li; Xuan Yao; Haibin Wang; Xiaoyan Song
Journal: Advanced Functional Materials
Year: 2024