Fangyuan Hu | Materials Science | Best Researcher Award

Prof Dr. Fangyuan Hu | Materials Science | Best Researcher Award

Professor Doctoral at Walter Sisulu University, South Africa.

Fangyuan Hu is a distinguished academic and researcher currently serving as Deputy Dean at the School of Materials Science and Engineering, Dalian University of Technology. He earned his Ph.D. in Polymer Chemistry and Physics from Dalian University of Technology in 2014, followed by a successful tenure as a postdoctoral fellow at the same institution. Hu is recognized as a key member of China’s Ministry of Science and Technology innovation team, with extensive experience leading national research projects and fostering collaborations between academia and industry. His research focuses on advanced materials for energy storage and he has published widely, holds numerous patents, and contributes actively to the scientific community through editorial roles and professional memberships.

Professional Profiles:

Education 🎓

Received Ph.D. degree from Dalian University of Technology (DUT) in 2014, majoring in Polymer Chemistry and Physics.

Professional Experience

Worked as a postdoctoral fellow at Dalian University of Technology (DUT) after obtaining Ph.D. Currently serving as Deputy Dean at the School of Materials Science and Engineering, DUT. Extensive experience includes leadership roles in national research projects and collaborations with industry and academic bodies.

Research Interest

Fangyuan Hu, currently serving as Deputy Dean at the School of Materials Science and Engineering, Dalian University of Technology, has established a prominent research profile centered on cutting-edge advancements in energy storage materials and technologies. With a Ph.D. in Polymer Chemistry and Physics from Dalian University of Technology and extensive postdoctoral experience within the institution, Hu’s research focuses on developing novel electrode materials based on rigid aromatic heterocyclic polymers. Additionally, Hu explores high ionic conductivity, high-temperature resistant polymer electrolytes, and the design of intelligent energy devices. These endeavors not only contribute significantly to the academic field but also foster collaborations with industry and national research projects, demonstrating Hu’s leadership in advancing sustainable energy solutions.

Award and Honors

Fangyuan Hu has received several prestigious awards and honors for his outstanding contributions to materials science and engineering, particularly in the field of energy materials. These accolades recognize his leadership and innovative research in developing novel electrode materials and high-performance energy devices. Hu’s achievements have been celebrated with awards from national bodies and industry partners, highlighting his significant impact on advancing sustainable energy solutions through pioneering research and collaborations.

Research Skills

Fangyuan Hu possesses exceptional skills in polymer chemistry, materials science, and electrochemistry. His expertise includes the development of rigid aromatic heterocyclic polymer-based electrode materials, high-temperature resistant polymer electrolytes, and intelligent energy device architectures. Hu is adept at leading interdisciplinary research projects, publishing prolifically in high-impact journals, and securing numerous patents. He demonstrates strong leadership in academic and industry collaborations, contributing significantly to advancements in energy storage technologies and sustainable materials innovation.

Publications

  1. An all-biomaterials-based aqueous binder based on adsorption redox-mediated synergism for advanced lithium–sulfur batteries
    • Year: 2024
    • Citations: 0
    • Authors: Jiang, W., Zhang, T., Mao, R., Jian, X., Hu, F.
    • Journal: eScience
  2. Flexible carbon fiber membrane derived from polypropylene for symmetric quasi-solid-state supercapacitors
    • Year: 2024
    • Citations: 0
    • Authors: Liu, Q., Yang, M., Deng, Y., Jian, X., Chen, Y.
    • Journal: Journal of Power Sources
  3. Electrospun Core-Shell Carbon Nanofibers as Free-Standing Anode Materials for Sodium-Ion Batteries
    • Year: 2024
    • Citations: 0
    • Authors: Li, B., Pei, M., Qu, Y., Jian, X., Hu, F.
    • Journal: ACS Applied Nano Materials
  4. Advanced Polymers in Cathodes and Electrolytes for Lithium–Sulfur Batteries: Progress and Prospects
    • Year: 2024
    • Citations: 3
    • Authors: Song, Z., Jiang, W., Li, B., Jian, X., Hu, F.
    • Journal: Small
  5. Ten-Minute Synthesis of a New Redox-Active Aqueous Binder for Flame-Retardant Li-S Batteries
    • Year: 2024
    • Citations: 7
    • Authors: Zhang, T., Li, B., Song, Z., Jian, X., Hu, F.
    • Journal: Energy and Environmental Materials
  6. “Like Compatible Like” Strategy Designing Strong Cathode-Electrolyte Interface Quasi-Solid-State Lithium–Sulfur Batteries
    • Year: 2024
    • Citations: 2
    • Authors: Song, Z., Wang, L., Jiang, W., Jian, X., Hu, F.
    • Journal: Advanced Energy Materials
  7. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na+ Migration Kinetics for Advanced Sodium-Ion Batteries
    • Year: 2024
    • Citations: 1
    • Authors: Yao, Y., Pei, M., Su, C., Jian, X., Hu, F.
    • Journal: Small
  8. 3D Adsorption-Mediator Network Polymer Binders Improve Redox Kinetics and Flame Retardant Performance for High Loading Lithium–Sulfur Batteries
    • Year: 2023
    • Citations: 7
    • Authors: Li, B., Zhang, T., Song, Z., Jian, X., Hu, F.
    • Journal: Advanced Functional Materials
  9. Skeleton-flesh shape of multipath Li+ transport and compatible interfacial composite solid electrolyte for stable Li-metal batteries
    • Year: 2023
    • Citations: 1
    • Authors: Wang, X., Dong, X., Song, X., Huang, H., Qi, M.
    • Journal: Journal of Energy Storage
  10. Promising single-atom catalysts for lithium-sulfur batteries screened by theoretical density functional theory calculations
    • Year: 2023
    • Citations: 0
    • Authors: Song, C., Hu, F., Zhang, T., Yao, M., Jian, X.
    • Journal: Science China Materials

 

Batoul Hosseinzadeh | Materials Science | Best Researcher Award

Dr. Gabriel Kamsu Tchuente | Pharmacology | Best Researcher Award

Researcher at University of Brescia – Italy.

Batoul Hosseinzadeh is a versatile researcher specializing in electrochemical research and material science. Currently affiliated with the Department of Mechanical and Industrial Engineering at the University of Brescia, Italy, Batoul has a robust background in synthesizing and characterizing novel materials such as metal-organic frameworks (MOFs), molecularly imprinted polymers (MIPs), and nanostructured electrode materials. She completed her Ph.D. in Analytical Chemistry from the Institute for Advanced Studies in Basic Sciences, Iran, focusing on the development of MOF-based nanostructures for supercapacitors. Batoul has extensive international research experience, including postdoctoral roles in Turkey and Iran, and a sabbatical fellowship at the Catalan Institute of Nanoscience and Nanotechnology in Spain. She is skilled in UV/Vis spectrophotometry, electron microscopy, and various electrochemical techniques, contributing significantly to the field of electrochemical energy storage and sensor applications.

Professional Profiles:

Education 🎓

Batoul Hosseinzadeh pursued an extensive academic journey focused on analytical chemistry, culminating in a Ph.D. from the Institute for Advanced Studies in Basic Sciences, Zanjan, Iran, between 2014 and 2019. Her doctoral research delved into the synthesis of novel metal-organic framework-based nanostructures, specifically aimed at enhancing electrode materials for high-performance electrochemical supercapacitors, under the guidance of Dr. Sayed Habib Kazemi. Prior to her Ph.D., she completed a Master’s degree at the same institution from 2010 to 2012, where her thesis centered on the electrochemical synthesis and characterization of nano-structured conducting metallopolymer of NiPorphyrine. Beginning her academic journey, Batoul earned her Bachelor’s degree in Chemistry from Shahid Chamran University, Ahvaz, Iran, solidifying her foundational knowledge in the field. Her academic pursuits reflect a dedication to advancing analytical chemistry through innovative research and application-driven studies in nanostructured materials and electrochemical technologies.

Professional Experience

Batoul Hosseinzadeh is a seasoned researcher specializing in electrochemical research and material science. Currently based at UniversitĂ  degli Studi di Brescia, Italy, she focuses on sensor design in Prof. Emilio Sardini’s group. Previously, she contributed significantly as a researcher at Ankara University, Turkey, under Prof. Sibel Aysil Ozkan, developing electrochemical sensors using MOFs and MIPs for anti-cancer drug detection. Her postdoctoral stint at Amirkabir University of Technology, Tehran, Iran, and earlier roles at the Institute for Advanced Studies in Basic Sciences, Zanjan, Iran, underscore her expertise in synthesizing and studying advanced materials like MOFs and MIPs. Batoul’s international collaborations and research in electrochemical sensor development highlight her commitment to advancing scientific knowledge and applications in this critical field.

Research Interest

Batoul Hosseinzadeh is an accomplished researcher specializing in electrochemical science and materials engineering. Her work primarily revolves around developing innovative electrochemical sensors using Metal-Organic Frameworks (MOFs), Molecular Imprinted Polymers (MIPs), and nanostructured materials. She focuses on enhancing energy storage technologies, particularly supercapacitors and batteries, by investigating advanced electrode materials. Batoul is adept in using spectroscopic and microscopic techniques for material characterization, crucial for optimizing performance and durability. Her research extends to environmental applications, where she explores sustainable solutions for environmental monitoring and remediation. With a strong commitment to collaboration, Batoul engages in interdisciplinary research projects with international partners to explore new frontiers in electrochemistry. Her contributions are pivotal in advancing both fundamental understanding and practical applications in the field of electrochemical sciences.

Award and Honors

🏆 Dr. Batoul Hosseinzadeh has received several prestigious awards and fellowships throughout her career:
She was awarded a research fellowship at Ankara University, Turkey in 2023, where she conducted advanced research in electrochemical sensor development. In 2020, she received a postdoctoral fellowship from Iran’s National Elites Foundation (ISEF), supporting her research endeavors. Prior to this, in 2018, Dr. Hosseinzadeh was granted a sabbatical fellowship to the Catalan Institute of Nanoscience and Nanotechnology in Spain, enriching her expertise in the synthesis and characterization of novel materials for energy storage applications. These fellowships have been instrumental in her international research collaborations and contributions to the field of analytical chemistry and electrochemical sensors.

Publications

  • Facile synthesis of mixed metal–organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability
    • Authors: SH Kazemi, B Hosseinzadeh, H Kazemi, MA Kiani, S Hajati
    • Journal: ACS applied materials & interfaces
    • Year: 2018
    • There
  • Electrochemical fabrication of conducting polymer of Ni-porphyrin as nano-structured electrocatalyst for hydrazine oxidation
    • Authors: SH Kazemi, B Hosseinzadeh, S Zakavi
    • Journal: Sensors and Actuators B: Chemical
    • Year: 2015
    • Citations: 40
  • MOF-derived conformal cobalt oxide/C composite material as high-performance electrode in hybrid supercapacitors
    • Authors: B Hosseinzadeh, B Nagar, R Benages-Vilau, P Gomez-Romero
    • Journal: Electrochimica Acta
    • Year: 2021
    • Citations: 30
  • Coordination geometry in metallo-supramolecular polymer networks
    • Authors: B Hosseinzadeh, M Ahmadi
    • J
    • Year: 2022
    • Quote
  • Electrophoretic deposition of Sn-doped TiO2 nanoparticles and its optical and photocatalytic properties
    • Authors: SE Hosseini Yeganeh, M Kazazi, B Koozegar Kaleji, SH Kazemi
    • Your
    • Year: 2018
    • Citations: 20
  • Hollow molecularly imprinted microspheres made by w/o/w double Pickering emulsion polymerization stabilized by graphene oxide quantum dots targeted for determination of L-Cysteine concentration
    • Or
    • Journal: Co
    • Year: 2021
    • Ambition
  • Degradable hydrogels: Design mechanisms and versatile applications
    • Authors: B Hosseinzadeh, M Ahmadi
    • J
    • Year: 2023
    • Ambition
  • Electrochemical Sensor for Food Monitoring Using Metal-Organic Framework Materials
    • Authors: B Hosseinzadeh, M Luz Rodriguez-Mendez
    • Journal: Chemosensors
    • AND
    • Citations: 4
  • Development of a molecularly imprinted polymer-based electrochemical sensor with metal-organic frameworks for monitoring the antineoplastic drug vismodegib
    • Authors: B Hosseinzadeh, SI Kaya, A Cetinkaya, EB Atici, SA Ozkan
    • Your
    • Year: 2024
  • Emerging trends of ion-selective electrodes in pharmaceutical applications
    • Authors: N Jadon, B Hosseinzadeh, SI Kaya, G Ozcelikay-Akyildiz, A Cetinkaya, et al.
    • Journal: Electrochimica Acta
    • Year: 2
    • Ambition