Long Huang | Materials Process Engineering | Best Academic Researcher Award | 13321

Dr. Long Huang | Materials Process Engineering | Best Academic Researcher Award

Dr. Long Huang, Nanchang Hangkong University, China

Dr. Huang Long is a Lecturer and Master Supervisor at the School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, China. He earned his Ph.D. from Northwestern Polytechnical University under Prof. Sun Zhichao. His research focuses on precise plastic forming of difficult-to-deform materials (e.g., titanium alloys), microstructure-property regulation, and residual stress control in aero-engine components. He previously worked at China Aero-Engine South Industry Co., Ltd., contributing to process innovations and high-performance component development. Dr. Huang has published over 30 academic papers and holds five invention patents.

Profile

Early Academic Pursuits ✨

Dr. Huang Long embarked on his academic journey with a strong foundation in materials science and engineering. He earned his Bachelor of Science degree in Material Forming and Control Engineering from East China Jiaotong University in 2010, where he cultivated his interest in advanced manufacturing and materials processing. His passion for materials engineering led him to pursue a Master’s degree at Chongqing University (2011-2014) under the mentorship of Prof. Wang Menghan. During this period, he honed his expertise in materials processing, focusing on innovative techniques for improving mechanical properties and manufacturing efficiency.

Taking his academic endeavors to the next level, Dr. Huang pursued a Ph.D. in Materials Processing Engineering at Northwestern Polytechnical University from 2018 to 2022. Under the guidance of Prof. Sun Zhichao, a National Leading Talent, he specialized in precise plastic forming, microstructure regulation, and heat treatment processes for high-performance aerospace materials. His doctoral research contributed significantly to the field, particularly in the forming and performance enhancement of titanium alloys, a critical material for aerospace applications.

Professional Endeavors 💼

Following the completion of his Master’s degree, Dr. Huang joined China Aero-Engine South Industry Co., Ltd. (AECC South) in 2014 as a Technical Engineer in the Engineering Technology Department. During his tenure at AECC South, he played a crucial role in process innovation, working extensively on novel plastic forming techniques for titanium alloys and superalloys used in aero-engine components. His work focused on improving microstructure-property relationships and optimizing heat treatment methods to enhance material performance and longevity.

After nearly four years of impactful industrial research and development, Dr. Huang transitioned into academia in July 2022. He joined Nanchang Hangkong University as a Lecturer at the School of Aeronautical Manufacturing Engineering, where he continues to engage in cutting-edge research while mentoring the next generation of engineers. As a Master Supervisor, he guides graduate students in advanced manufacturing techniques, ensuring they develop the skills necessary for the evolving aerospace industry.

Contributions and Research Focus 🌟

Dr. Huang’s research interests lie at the intersection of materials science, mechanical engineering, and aerospace technology. His work has significantly advanced the understanding of:

  1. Precise Plastic Forming: Developing innovative forming techniques for complex components made from difficult-to-deform materials like titanium alloys and superalloys.
  2. Microstructure Regulation and Performance Optimization: Investigating the influence of heat treatment and forging processes on material properties to enhance mechanical performance.
  3. Superplasticity in Lightweight Aerospace Alloys: Exploring how superplastic forming techniques can be leveraged for efficient manufacturing.
  4. Residual Stress and Deformation Control: Modeling and simulating the behavior of aero-engine components during heat treatment to minimize defects and residual stresses.

Dr. Huang has led multiple research projects, including those funded by the Jiangxi Provincial Natural Science Foundation, the Science and Technology on Light Alloy Processing Laboratory, and Nanchang Hangkong University. His work continues to push the boundaries of materials engineering, making significant strides in aerospace manufacturing.

Accolades and Recognition 🏆

Dr. Huang’s contributions to materials processing and aerospace engineering have earned him significant recognition in the scientific community. He has published over 30 peer-reviewed academic papers in reputable journals, showcasing his expertise in materials engineering. Additionally, he holds five authorized invention patents related to advanced forming techniques and heat treatment processes. His patents have practical applications in the aerospace industry, contributing to more efficient and cost-effective manufacturing processes.

Beyond publications and patents, Dr. Huang’s research has been acknowledged through prestigious funding grants and industry collaborations, cementing his reputation as a leading researcher in his field.

Publication Top Notes

Author: T., Ding, Tong, K., Wei, Ke, Y., Hou, Yong, L., Huang, Long, M., Lee, Myoung-gyu

Journal: Chinese Journal of Mechanical Engineering

Year: 2024

Author: Y., Wang, Yuhang, S., Luo, Shuanmou, X., Dong, Xiangjuan, Z., Tu, Zeli, J., Li, Jiajun

Journal: Suxing Gongcheng Xuebao/Journal of Plasticity Engineering, 

Year: 2024

Zhao Jing | Functional polymer | Best Researcher Award | 13247

Assoc. Prof. Dr. Zhao Jing | Functional polymer | Best Researcher Award 

Assoc. Prof. Dr. Zhao Jing, Xi’an polytechnic university, China

Assoc. Prof. Dr. Jing Zhao is a researcher at the School of Environmental and Chemical Engineering, Xi’an Polytechnic University, China. She holds a Ph.D. in Polymer Chemistry and Physics from Northwest University, China. Her research focuses on nanomaterials, biomimetic materials, and multifunctional materials, particularly in drug delivery systems and tissue engineering. She has published extensively on chitosan-based nanoparticles, hydrogels, and biomimetic catalysts, contributing to advancements in biocompatible and biodegradable materials for medical applications.

Profile

Scopus

🎓 Early Academic Pursuits

Dr. Jing Zhao was born on February 7, 1985, in Tangshan, Hebei Province, China. With a passion for chemical sciences, she embarked on an academic journey that led her to pursue a Bachelor’s degree in Chemical Engineering and Technology at North University of China, which she successfully completed in 2007. Recognizing her potential in polymer chemistry, she continued her education at North University of China and earned a Master’s degree in Polymer Chemistry and Physics in 2010. Her thesis focused on the synchronistic synthesis and immobilization of cobalt porphyrins on microspheres GMA/MMA and researching the catalytic properties of supported cobalt porphyrins.

Her academic pursuits reached new heights when she enrolled at Northwest University, China, for her Ph.D. in Polymer Chemistry and Physics. During her doctoral studies, she worked on the preparation and properties of polymeric nanoparticles with a cell outer membrane biomimetic structure as a drug delivery system, showcasing her deep interest in biomaterials and nanotechnology.

💼 Professional Endeavors

Dr. Zhao began her professional career in September 2013 as an Associate Professor at the School of Environmental and Chemical Engineering, Xi’an Polytechnic University. Her role has allowed her to mentor students and contribute significantly to the field of polymer science and engineering. Her research has focused on the development of advanced nanomaterials and biomimetic structures, aiming to enhance drug delivery systems and tissue engineering applications.

🔧 Contributions and Research Focus

Dr. Zhao’s research interests are centered around nanomaterials, multifunctional materials, and biomimetic materials. Her work primarily involves:

  • Biodegradable and Biocompatible Nanoparticles: Developing nanoparticles as efficient drug delivery carriers, particularly focusing on chitosan-based nanoparticles.
  • Injectable Hydrogels: Exploring their use as scaffold materials for tissue engineering, aiming to improve biocompatibility and drug delivery efficiency.
  • Polymeric Nanoparticles with Cell Outer Membrane Biomimetic Structures: Creating innovative solutions to mimic biological interactions for better therapeutic applications.
  • Biomimetic Catalysts: Investigating supported cobalt porphyrin catalysts for enhanced catalytic performance in various applications.

Her work has significantly contributed to the advancement of drug delivery mechanisms, particularly in the controlled release of both hydrophobic and hydrophilic drugs.

🏆 Accolades and Recognition

Dr. Zhao’s contributions to polymer chemistry and biomimetic nanomaterials have been recognized through numerous publications in reputable journals. Her research has been cited widely, reflecting the impact of her work on the scientific community. Some of her notable publications include:

  • “Multifunctional Polyvinyl Alcohol/Gallic Acid Functionalized Chitosan Hydrogels for Wound Dressings” (Reactive and Functional Polymers, 2024).
  • “Mussel-Mimetic Chitosan-Based Injectable Hydrogel as a Tissue Adhesive” (International Journal of Adhesion and Adhesives, 2023).
  • “PEGylated Chitosan Decorated UiO‑66 Nanoscale Metal–Organic Frameworks for Drug Delivery” (Colloid and Polymer Science, 2023).
  • “Chitosan-Based Nanoparticles for Controlled Release of Hydrophobic and Hydrophilic Drugs” (Bioinspired, Biomimetic and Nanobiomaterials, 2021).

Her research has played a crucial role in advancing biomimetic materials for medical applications, making significant strides in tissue engineering and drug delivery methodologies.

Publication Top Notes

Multifunctional polyvinyl alcohol/gallic acid functionalized chitosan hydrogels prepared by freeze-thaw method for potential application as wound dressings. Reactive and Functional Polymers,

Author: Lu Cui, Jing Zhao*, Yurui Wang, Xinyi Han, Lingheng Kong, Fei Liang.

Journal: Reactive and Functional Polymers

Year: 2024

Mussel-mimetic chitosan based injectable hydrogel with fast-crosslinking and water-resistance as tissue adhesive. International Journal of Adhesion and Adhesives

Author: Yurui Wang, Jing Zhao, Xiaoran Wang, Rong Zhang, Fei Liang

Journal: Adhesion and Adhesives

Year: 2023

Ning Wang | Molecule Dynamics | Best Researcher Award | 13229

Mr. Ning Wang | Molecule Dynamics | Best Researcher Award 

Mr. Ning Wang, Peking University, China

Mr. Ning Wang is a Master’s student in Materials Physics and Chemistry at Peking University, Shenzhen Graduate School. His research focuses on AI-driven advancements in materials science, including machine learning applications in molecular simulations and atomic interaction modeling. He has conducted research at the Matter Lab, University of Toronto, and has multiple publications in computational materials science. His work includes the development of the Egsmole model for molecular orbital learning, machine learning-accelerated crystal growth simulations, and AI-driven material discovery tools. He has received several academic awards and actively contributes to open-source projects in computational chemistry.

Profile

Scopus

Early Academic Pursuits 🎓

Ning Wang’s academic journey began with a strong foundation in materials science and engineering. His undergraduate studies at Northeastern University (2018–2022) were marked by excellence, earning him prestigious awards such as the National Scholarship (2020) and the First-Class University Scholarship. His early exposure to materials research set the stage for his specialization in computational materials science and AI-driven simulations. His research at the Key Lab of Electromagnetic Processing of Materials, where he investigated 5A90 Al-Li alloys, demonstrated his keen analytical skills and commitment to advancing materials science.

Building on this foundation, he pursued a Master’s degree in Materials Physics and Chemistry at Peking University, Shenzhen Graduate School. His summer research stint at the Matter Lab, University of Toronto (2024), under Prof. Alan Aspuru-Guzik, further refined his expertise in AI applications for materials science. His dedication to the field was evident in his research on molecular orbital learning using machine learning, where he introduced groundbreaking methodologies for enhanced computational simulations.

Professional Endeavors 🏗️

Ning Wang’s professional trajectory has been characterized by a blend of theoretical research and practical application. His work at Peking University’s Pan Group focused on machine learning-accelerated simulations of silver single crystal growth. He developed a robust dataset comprising over 70,000 data points using density functional theory (DFT) calculations and trained machine learning models to predict material behaviors accurately.

Additionally, his involvement with DP Technology in 2023 saw him enhancing the DeepPot model with Transformer-M architecture, achieving significant improvements in energy prediction. His participation in the AI4S Cup further demonstrated his ability to apply AI-driven techniques to real-world material challenges, such as predicting attributes of OLED materials.

Contributions and Research Focus 🔬

Ning Wang’s research is at the intersection of artificial intelligence, computational chemistry, and materials science. His key contributions include:

  • Egsmole Model: A novel equivariant graph neural network designed for molecular orbital learning, ensuring symmetry adherence in molecular simulations.
  • GDGen Methodology & Pygdgen: A gradient descent-based approach for generating optimized atomic configurations, significantly improving computational simulations.
  • Machine Learning-Accelerated Crystal Growth: Developing AI-driven force fields to predict and optimize silver single crystal growth, bridging experimental and theoretical insights.
  • DeepPot Enhancement: Integrating Transformer-M architecture to improve atomic interaction modeling, reducing prediction errors and enhancing computational efficiency.
  • XMaterial Plugin: Connecting ChatGPT with the Materials Project database, enabling seamless AI-driven material searches without requiring coding expertise.

His ability to merge AI with materials science has resulted in impactful publications, including works in the Journal of Alloys and Compounds and Computer Physics Communications. His research papers focus on novel AI methodologies for predicting molecular properties, optimizing atomic interactions, and accelerating material discovery.

Accolades and Recognition 🏆

Ning Wang’s contributions have earned him significant recognition in the scientific community:

  • National Scholarship (2020): Awarded to the top 1% of students, recognizing academic excellence.
  • First-Class University Scholarship (2020): Honoring outstanding research contributions during his undergraduate studies.
  • 3rd Prize in DP Technology Hackathon (2023): Acknowledging his innovative approach to enhancing DeepPot models with AI.
  • Acceptance at Prestigious Conferences: His research on AI-driven atomic interactions and molecular simulations has been presented at the International Conference on Electronic Information Engineering and Computer Science.
  • Publication in High-Impact Journals: His papers in Journal of Alloys and Compounds and Computer Physics Communications highlight his thought leadership in AI-driven materials research.

Publishing Top Notes

Author: Tao, Y., Jiang, W., Yang, Q., Cao, X., Wang, N.

Journal: Nano Energy

Year:  2025

Author: Zhu, Q., Sun, E., Sun, Y., Cao, X., Wang, N.

Journal: Nanomaterials

Year: 2024

Author: Zhang, Z., Zhang, H., Ma, J., Wang, N.

Journal: Construction and Building Materials

Year: 2024