Wenqiang Yang | Advanced Materials Engineering | Research Excellence Award

Assoc. Prof. Dr. Wenqiang Yang | Advanced Materials Engineering | Research Excellence Award

Beihang University | China

Dr. Wenqiang Yang is an emerging leading scholar in the field of optoelectronic materials, specializing in perovskite semiconductors and their advanced device applications. His research centers on the design, synthesis, and physics of next-generation perovskite materials for high-performance photovoltaics, light-emitting diodes (LEDs), photodetectors, and scintillators. With a strong foundation in optoelectronic material physics, his work spans fundamental studies on ultrafast carrier dynamics, interface engineering, crystallization mechanisms, dielectric screening, and defect management, as well as the development of scalable and efficient device architectures. Dr. Yang’s investigations have significantly advanced the understanding of charge transport, stability enhancement, surface modifications, and interfacial optimization in halide perovskite systems, enabling notable progress toward commercially viable perovskite-based optoelectronics. A major portion of his research has focused on solving critical limitations in perovskite solar cells, including charge confinement, instability under environmental stress, and buried interface losses. His breakthroughs include demonstrating methods such as amine-assisted ligand exchange, green solution-bathing processes, low-dimensional interlayers, plasmonic functionalization, grain encapsulation, and surface-modifying quantum dots, which have improved device efficiency, photovoltage, and long-term stability. Several of his studies have been recognized as ESI Highly Cited Papers, and one was selected among the Top 100 Most Influential International Academic Papers in China (2018). Beyond photovoltaics, Dr. Yang has advanced research on perovskite photodetectors, demonstrating broadband and plasmonic-enhanced detection strategies, as well as on perovskite single-crystal micro-arrays that open pathways for high-performance functional optoelectronic devices. His work on dielectric screening and multiple-defect management has provided foundational insights that influence device engineering strategies worldwide. With over 20 SCI-indexed publications, more than 4114 citations, and an h-index of 19, his contributions have already shaped the direction of optoelectronic material research. Dr. Yang’s interdisciplinary collaborations across materials science, nanotechnology, energy engineering, and device physics further amplify the impact of his research, positioning him as a significant contributor to the global advancement of perovskite-based optoelectronic technologies.

Citation Metrics (Google Scholar)

5000
4000
3000
2000
1000
  500
  100
    50
    20
    10
      0

Citations
4114

Documents
3590

h-index
19

Citations

Documents

h-index



View Google Scholar Profile

Featured Publications

Lei Xia | Chemistry and Materials Science | Research Excellence Award

Assoc Prof Dr. Lei Xia | Chemistry and Materials Science | Research Excellence Award

University of Science & Technology Liaoning | China

Dr. Lei Xia is an accomplished materials scientist and associate professor at the University of Science & Technology Liaoning, specializing in materials processing, tribology, corrosion protection, and computational simulation. He holds a PhD in Applied Chemistry from the Research Institute of Petroleum Processing, a Master’s degree in Materials Forming and Control Engineering from the University of Science and Technology Beijing, and a Bachelor’s degree from Yanshan University. Since joining USTL as a lecturer in 2019 and becoming associate professor in 2024, Dr. Xia has developed a strong research portfolio integrating experimental, theoretical, and simulation-based approaches to improve metal processing technologies. His major research areas include tribology and lubrication mechanisms in rolling processes, microstructure–property relationships in metallic materials, corrosion behavior and protective coatings, and molecular-level insights into lubricant oxidation and surface interactions using MD and QM simulations. Dr. Xia has completed and contributed to multiple national and enterprise-supported research projects, focusing on the improvement of steel, aluminum, and copper alloy processing performance. His scholarly contributions exceed 40 publications in high-impact SCI and EI journals, such as Lubricants, Metals, Materials Research Express, Tribology Letters, Rare Metal Materials and Engineering, and China Petroleum Processing & Petrochemical Technology. Many of his works investigate fatigue properties, lubricant chemistry, tribological behaviors, corrosion mechanisms, and the influence of process parameters on material performance. He has published two patents and numerous articles as corresponding or first author, demonstrating his leadership in research innovation. Dr. Xia’s contributions extend to several industrial collaborations with major enterprises such as Anshan Iron and Steel Group, Baowu Group, and Sinopec, where his work has directly supported advancements in rolling technology and surface quality control. His recognition includes selection for the prestigious Liaoning “Baiqianwan Talent Program” and the “Steel Capital Talent Plan.” Alongside his research, he serves on the youth editorial boards of multiple journals including Journal of Iron and Steel Research, Rolling Steel, Special Steel, Mechanical Engineering Newsletter, and Journal of Materials and Metallurgy. He is also an active member of professional societies such as the Chinese Mechanical Engineering Society, Chinese Materials Research Society, Chinese Chemical Society, and the China Nonferrous Metals Industry Association. Through interdisciplinary expertise, impactful publications, industrial collaborations, and major talent awards, Dr. Xia has made significant contributions to tribology, corrosion protection, and advanced materials processing, strengthening both academic research and industrial innovation.

Profile: Google Scholar

Featured Publications

Xia, L., Ma, Z., Kokogiannakis, G., Wang, Z., & Wang, S. (2018). A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors. Applied Energy, 214, 178–190. https://doi.org/10.1016/j.apenergy.2018.02.024

Ma, Z., Xia, L., Gong, X., Kokogiannakis, G., Wang, S., & Zhou, X. (2020). Recent advances and development in optimal design and control of ground source heat pump systems. Renewable and Sustainable Energy Reviews, 131, 110001. https://doi.org/10.1016/j.rser.2020.110001

Duong, H. C., Xia, L., Ma, Z., Cooper, P., Ela, W., & Nghiem, L. D. (2017). Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation. Journal of Membrane Science, 542, 133–142. https://doi.org/10.1016/j.memsci.2017.08.019

Xia, L., Ma, Z., Kokogiannakis, G., Wang, S., & Gong, X. (2018). A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors. Applied Energy, 228, 1399–1412. https://doi.org/10.1016/j.apenergy.2018.06.017

Chen, J., Xia, L., Li, B., & Mmereki, D. (2015). Simulation and experimental analysis of optimal buried depth of the vertical U-tube ground heat exchanger for a ground-coupled heat pump system. Renewable Energy, 73, 46–54. https://doi.org/10.1016/j.renene.2014.06.055

Qi, D., Pu, L., Ma, Z., Xia, L., & Li, Y. (2019). Effects of ground heat exchangers with different connection configurations on the heating performance of GSHP systems. Geothermics, 80, 20–30. https://doi.org/10.1016/j.geothermics.2019.01.006

Xia, L., Ma, Z., McLauchlan, C., & Wang, S. (2017). Experimental investigation and control optimization of a ground source heat pump system. Applied Thermal Engineering, 127, 70–80. https://doi.org/10.1016/j.applthermaleng.2017.07.111

Gong, X., Xia, L., Ma, Z., Chen, G., & Wei, L. (2018). Investigation on the optimal cooling tower input capacity of a cooling tower assisted ground source heat pump system. Energy and Buildings, 174, 239–253. https://doi.org/10.1016/j.enbuild.2018.06.021

Morteza Ghanepour | Advanced Materials Engineering | Editorial Board Member

Mr. Morteza Ghanepour | Advanced Materials Engineering | Editorial Board Member

Semnan University | Germany

Mr. Morteza Ghanepour is an accomplished Structural Engineer based in Cottbus, Brandenburg, Germany, recognized for his strong academic record, high-impact research, and diverse professional experience across industrial, academic, and laboratory environments. He holds a Master of Science in Structural Engineering from Semnan University, graduating with a perfect 4.0 GPA and ranking second among his cohort. His thesis, supervised by Prof. Omid Rezaeifar, focused on the numerical investigation of magnetic fields on concrete containing silica sand and ferrosilica, establishing a foundation for his ongoing expertise in smart materials and advanced concrete technologies. Morteza also holds a Bachelor of Science in Civil Engineering from Semnan University, an institution globally ranked among the top 250, where he demonstrated excellence in courses such as Structural Dynamics, Bridge Design, Advanced Construction Materials, and Finite Element Method. His research contributions span advanced concrete, composites, smart structures, FRP systems, nanomaterials, and multifunctional materials. Morteza has published several impactful journal papers in Results in Engineering, Journal of Building Engineering, and Case Studies in Construction Materials, including pioneering studies on the effects of alternating magnetic fields on mechanical properties, compressive strength, and stress–strain behavior of concrete. He has also served as a peer reviewer for international journals, evaluating studies on geopolymer microstructures and concrete performance. His scholarly achievements have earned him multiple competitive scholarships, including awards from Semnan University, the NAN Institution, and the Technical and Vocational Organization of Damghan for supporting his laboratory research. Morteza’s professional record includes valuable industry experience such as his role at Tesla Gigafactory Berlin, where he worked as a Turnover Engineer and Project Manager. There, he handled acceptance tracking for construction projects worth €400 million, conducted over 70 inspections, resolved more than 160 technical deviations, and delivered 60+ training sessions across Europe. His earlier roles at Pey Dezh Damghan Engineering Company included site engineering, construction management, drafting, and structural modeling—optimizing materials, enhancing safety compliance, and reducing project costs through software such as ETABS, AutoCAD, FEM, and REVIT. Fluent in English and Persian, Morteza is certified in civil supervision, concrete quality control, HSE/EHS, AutoCAD, and Revit Structures. He is also an active volunteer with the Iranian Red Crescent Society. Fully committed to excellence, innovation, and engineering advancement, he continues to contribute to the evolving field of structural and materials engineering.

Profile: Scopus

Featured Publications

Ghanepour, M., Amini, M. M., & Rezaifar, O. (2024). Numerical investigation on the impact of alternating magnetic fields on the mechanical properties of concrete with various silica sand and ferrosilicon compositions. Results in Engineering, 103631.

Amini, M. M., Ghanepour, M., & Rezaifar, O. (2024). Experimental analysis of the impact of alternating magnetic fields on the compressive strength of concrete with various silica sand and microsilica compositions. Case Studies in Construction Materials, 21, e03487.

Rezaifar, O., Ghanepour, M., & Amini, M. M. (2024). A novel magnetic approach to improve compressive strength and magnetization of concrete containing nano silica and steel fibers. Journal of Building Engineering, 91, 109342.

Ghanepour, M., Amini, M. M., & Rezaifar, O. (2024). Experimental investigation of the effects of magnetic field on the stress-strain curve of concrete specimens containing steel fibers using strain gauge. Laboratory of Civil Engineering, Semnan University.

Jiaming Ni | 2D Materials | Best Researcher Award

Dr. Jiaming Ni | 2D Materials | Best Researcher Award 

Dr. Jiaming Ni | Nanchang hangkong university | China

Jiaming Ni holds a Ph.D. in Materials Science and Engineering from the Autonomous University of San Luis Potosí, Mexico, a Master’s degree in Mechanical and Electrical Engineering from Guilin University of Electronic Technology, and a Bachelor’s degree in Vehicle Engineering from Nanchang University. His research focuses on semiconductor materials, first-principles calculations, and photocatalytic hydrogen production. He has published impactful studies on GaS/XTe₂ heterostructure photocatalysts (International Journal of Hydrogen Energy, IF 7.2), van der Waals heterostructures for hydrogen production (Journal of Materials Chemistry C, IF 7.059), and gas adsorption on doped WSe₂ (Applied Surface Science, IF 6.182).

Author Profile

Scopus | Orcid

Education

From the very beginning of his academic journey, Jiaming Ni demonstrated a keen interest in engineering, materials science, and technological innovation. His foundational education in Vehicle Engineering at the College of Science and Technology, Nanchang University, provided him with a strong technical background in mechanics, design, and manufacturing processes. Eager to expand his expertise, he pursued a Master’s degree in Mechanical and Electrical Engineering at Guilin University of Electronic Technology, where he gained deeper knowledge in interdisciplinary engineering systems. His thirst for innovation and research led him to the Autonomous University of San Luis Potosí, Mexico, where he completed his Ph.D. in Materials Science and Engineering under the guidance of Prof. Shaoxian Song. Throughout his academic journey, Ni developed a strong foundation in semiconductor materials, micro/nano-structures, and advanced computational methods, preparing him for impactful research contributions in his later career.

Experience

After completing his higher education, Jiaming Ni embarked on a career that bridged academia and industry. His early professional role as a Manufacturing Engineer at Semiconductor Manufacturing International Corporation (SMIC) enabled him to apply his technical skills in a highly demanding semiconductor fabrication environment. Later, as a Process Integration Engineer at Guangzhou CanSemi Technology Inc., he worked on optimizing semiconductor production processes, gaining valuable insights into industrial-scale applications of his research expertise. Currently, Ni serves as a Lecturer at Nanchang Hangkong University, where he combines teaching, mentorship, and advanced research to inspire the next generation of engineers and scientists.

Research Focus

Jiaming Ni’s research focuses on semiconductor materials, first-principles calculations, micro- and nano-structure simulations, and the optoelectronic properties of advanced materials. He has made significant contributions to the development of novel two-dimensional (2D) materials, with a particular emphasis on their application in photocatalytic hydrogen production, a promising technology for sustainable energy generation. His expertise also encompasses gas adsorption phenomena and the performance evaluation of alloy materials, addressing challenges in both energy and environmental fields. Among his influential works are studies on GaS/XTe₂ (X = W, Mo) heterostructure photocatalysts for efficient water splitting (International Journal of Hydrogen Energy, IF 7.2), van der Waals heterostructures based on InSe–XS₂ (X = Mo, W) as photocatalysts for hydrogen production (Journal of Materials Chemistry C, IF 7.059), and adsorption of small gas molecules on strained WSe₂ doped with Pd, Ag, Au, and Pt (Applied Surface Science, IF 6.182, cited 9 times). Collectively, these contributions highlight his ability to bridge theoretical computational modeling with practical applications in renewable energy, semiconductor technologies, and environmental protection.

Award and Recognition

Jiaming Ni’s scholarly work has been recognized through publications in high-impact, top-tier journals across the fields of materials science and energy research. His studies have been cited by peers worldwide, reflecting the influence and credibility of his findings. Publishing in Chinese Academy of Sciences (CAS) Zone 1 and Zone 2 journals underscores the quality and international competitiveness of his work. Moreover, his research collaborations with scientists across different countries have further amplified the global reach of his contributions.

Impact and Influence

Through his combined academic and professional endeavors, Ni has contributed to advancing the global understanding of 2D materials, semiconductor device engineering, and sustainable hydrogen production technologies. His work in photocatalytic hydrogen generation addresses one of the most pressing challenges of our time—developing clean, renewable energy sources. In addition, his studies on gas adsorption and alloy performance have implications for environmental monitoring, energy storage, and advanced manufacturing. His career path reflects a unique balance between theoretical research and practical industrial application, making his expertise valuable to both academic and commercial sectors.

Tailoring the electronic and optical properties of layered blue phosphorene/ XC (X=Ge, Si) vdW heterostructures by strain engineering.

Author: Jiaming Ni, Mildred Quintana, Feifei Jia , Shaoxian Song
Journal: Nanostructures
Year: 2021

Adsorption of small gas molecules on strained monolayer WSe2 doped with Pd, Ag, Au, and Pt: A computational investigation.

Author: Jiaming Ni, Wei Wang, Mildred Quintana, Feifei Jia, Shaoxian Song
Journal: Applied Surface Science
Year: 2020

Theoretical investigation of the sensing mechanism of the pure graphene and AL,B,N,P doped mono-vacancy graphene-based methane.

Author: Jiaming Ni, Bingqiao Yang, Feifei Jia, Yulai She, Shaoxian Song, Mildred Quintana
Journal: Chemical Physics Letters
Year: 2018

Conclusion

Jiaming Ni has established himself as a dedicated and innovative researcher whose work seamlessly integrates cutting-edge computational modeling with real-world applications in materials science. His advancements in 2D semiconductor materials, photocatalytic hydrogen production, gas adsorption, and alloy performance analysis not only contribute to the scientific community but also address pressing global challenges in clean energy and environmental sustainability. Through his impactful publications, interdisciplinary expertise, and commitment to innovation, he continues to pave the way for next-generation materials and technologies that hold the potential to transform both industry and society.