Nabila Tabassum | Advanced Materials Engineering | Women Researcher Award

Ms. Nabila Tabassum | Advanced Materials Engineering | Women Researcher Award

Shiv Nadar Instituion of Eminence, Greater Noida | India

Ms. Nabila Tabassum is a doctoral researcher in Chemical Engineering at the Shiv Nadar Institution of Eminence, Greater Noida, India, whose work spans computational and experimental materials science with a strong focus on atomistic simulations, high-entropy materials, and sustainable energy and catalysis applications. Her research programme is grounded in the integration of density functional theory (DFT) and molecular dynamics (MD) modelling with bench-scale synthesis and characterization of advanced materials. Key thematic areas include the design, modelling and fabrication of high-entropy alloys (HEAs) and high-entropy oxides/ceramics (HEOs/HECs) for high-temperature and thermal-barrier-coating applications; catalytic conversion of bio-derived feedstocks (such as ethanol) to olefins and value-added chemicals; and CO₂ capture / separation by mixed amine and ionic-liquid solvents. Through her research she has developed a broad toolkit comprising high-fidelity atomistic simulation of structural, thermal and mechanical properties of multi-component materials; synthesis via ball-milling, pressing and sintering; catalytic kinetics modelling and heterogeneous catalyst preparation (for example Cd-ZrO₂, Cu-ZrO₂, Fe-ZrO₂ systems); and experimental absorption-based CO₂ capture studies and bio-film formation for food-packaging systems. Her doctoral topic—“Atomistic Simulations for the Development of High Entropy Materials with Superior Thermal Stability and Mechanical Properties”—positions her at the frontier of materials design for extreme environments. Her publications include in 2024 “Structural, Mechanical and Thermal Properties of AlₓCoCrFeNi Alloys” (Metals and Materials International), and in 2025 “Thermal stability assessment of mixed-phase AlCoCrFeNi high entropy alloy: In silico studies” (Physica B). Earlier she published reviews on ethanol to olefins conversion and on CO₂ hydrogenation to ethanol, demonstrating her competence in catalytic processes and kinetic modelling. The citation metrics reflect early-career standing, with strong growth trajectory given the multidisciplinary nature of her work. Her project leadership and participation include: as Senior Research Fellow (SRF) on a Dassault Systèmes–funded project (2024) on development of high-entropy oxides for thermal barrier coatings; leading computational/experimental investigations of HEOs; and participating in synthesis and characterization studies on TBC materials and related coatings. She has also collaborated on catalyst design and CO₂ capture systems, bridging fundamental simulation with applied experimental work. In teaching and mentoring roles, Ms. Tabassum contributes to the academic environment via supervision of M.Tech/B.Tech students, and participates in international conferences and symposiums, thereby disseminating her findings and building networks across materials and energy research communities. Her simulation-first approach, coupled with experimental verification, places her in a strong position to impact high-temperature materials development, energy conversion technologies and sustainable chemical processes.

Profiles: Scopus | Google Scholar

Featured Publications

Ali, S. S., Ali, S. S., & Tabassum, N. (2022). A review on CO₂ hydrogenation to ethanol: Reaction mechanism and experimental studies. Journal of Environmental Chemical Engineering, 10(1), 106962. https://doi.org/10.1016/j.jece.2021.106962

Tabassum, N., Pothu, R., Pattnaik, A., Boddula, R., Balla, P., Gundeboyina, R., Challa, P., Rajesh, R., Perugopu, V., Mameda, N., Radwan, A. B., & Al-Qahtani, N. (2022). Heterogeneous catalysts for conversion of biodiesel-waste glycerol into high-added-value chemicals. Catalysts, 12(7), 767. https://doi.org/10.3390/catal12070767

Tabassum, N., & Ali, S. S. (2021). A review on synthesis and transformation of ethanol into olefins using various catalysts. Catalysis Surveys from Asia, 26(4), 261–280. https://doi.org/10.1007/s10563-021-09348-2

Boddula, R., Shanmugam, P., Srivatsava, R. K., Tabassum, N., Pothu, R., & Naik, R. (2023). Catalytic valorisation of biomass-derived levulinic acid to biofuel additive γ-valerolactone: Influence of copper loading on silica support. Reactions, 4(3), 465–477. https://doi.org/10.3390/reactions4030033

Tabassum, N., Sistla, Y. S., Burela, R. G., & Gupta, A. (2024). Structural, electronic, mechanical and thermal properties of AlₓCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloy using density functional theory. Metals and Materials International, 30(6), 3349–3369. https://doi.org/10.1007/s12540-024-01709-6

Tabassum, N., & Sistla, Y. S. (2025). Thermal stability assessment of mixed-phase AlCoCrFeNi high-entropy alloy: In silico studies. Physica B: Condensed Matter, 712, 417319. https://doi.org/10.1016/j.physb.2025.417319

Sistla, Y. S., Burela, R. G., Gupta, A., & Tabassum, N. (2022). Optical, thermal, and mechanical properties of scheelite molybdate and tungstate materials using atomistic simulations. In Proceedings of the Biennial International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2022).

Tabassum, N., Sistla, Y., & Burela, R. (2022). The effect of pressure on phase transitions and properties of calcium tungstate solid-state material for laser applications using first-principles study. In Proceedings of YUKTHI Conference (2022).

Xiang Ke | Energy storage materials | Best Researcher Award | 13313

Assoc. Prof. Dr. Xiang Ke | Energy storage materials | Best Researcher Award 

Assoc. Prof. Dr. Xiang Ke, Guizhou University, China

Assoc. Prof. Dr. Xiang Ke is an esteemed researcher at Guizhou University, China, specializing in biomedical polymers and artificial organs. Holding a Ph.D. from Sichuan University under the supervision of Prof. Jianshu Li, his work focuses on bioadhesives, wound healing, and biomineralization-inspired materials. Dr. Ke has published extensively in high-impact journals such as Chem. Eng. J., ACS Appl. Mater. Interfaces, and Biomaterials Science, contributing significantly to advancements in medical biomaterials. His research integrates natural small molecules, supramolecular chemistry, and nanotechnology to develop innovative solutions for healthcare applications.

Profile

Scopus

🎓 Early Academic Pursuits

Assoc. Prof. Dr. Xiang Ke embarked on his academic journey with a keen interest in chemistry and materials science. He pursued his Ph.D. at Sichuan University, specializing in biomedical polymers and artificial organs under the mentorship of Prof. Jianshu Li. His doctoral research laid a strong foundation in biomaterials, bioadhesives, and tissue engineering, focusing on the development of natural polymer-based medical adhesives and coatings. Through rigorous study and experimentation, he mastered techniques in polymer chemistry, biocompatible materials, and nanotechnology, setting the stage for his impactful research career.

👨‍🏫 Professional Endeavors

Dr. Xiang Ke is currently serving as an Associate Professor at Guizhou University, where he continues to contribute significantly to the fields of biomedical materials and chemical engineering. His work spans multiple disciplines, integrating chemistry, biomaterials, and medical applications. His academic role involves mentoring young researchers, supervising graduate students, and leading groundbreaking research projects that aim to revolutionize medical adhesives, wound healing solutions, and tissue regeneration.

🔬 Contributions and Research Focus

Dr. Ke’s research primarily focuses on biomaterial innovation and biomedical applications. Some of his key areas of expertise include:

  • Bioadhesives and Hydrogels: He has developed biodegradable, self-healing, and antibacterial bioadhesives that are highly effective in wound healing and tissue repair.
  • Nanotechnology in Medicine: His work incorporates nanomaterials for drug delivery, infection control, and regenerative medicine.
  • Biomineralization-Inspired Materials: He has advanced bone and hard tissue repair techniques through bioinspired materials.
  • Supramolecular Chemistry: His research explores small molecule-based supramolecular systems for enhanced medical and engineering applications.

Dr. Ke has an extensive publication record, with over a dozen papers in leading journals such as ACS Applied Materials & Interfaces, Chemical Engineering Journal, Biomaterials Science, and Advanced Healthcare Materials. His contributions have provided valuable insights into the development of next-generation biomaterials, with applications in orthopedic surgery, dental restoration, and regenerative therapies.

🏅 Accolades and Recognition

Dr. Ke’s research excellence has been acknowledged by numerous high-impact publications and citations. Some of his notable recognitions include:

  • High-impact journal publications in the fields of biomaterials, tissue engineering, and nanomedicine.
  • Collaboration with renowned scientists and research groups in biomedical engineering.
  • Editorial contributions to scientific journals and peer-reviewing roles in biomaterials and chemistry research.
  • Invited speaker at international conferences, sharing insights on biomedical innovations.

His work has earned wide recognition in academia and industry, establishing him as a key contributor to biomedical advancements.

🌍 Impact and Influence

Dr. Ke’s research has far-reaching implications in medicine and healthcare. His innovations in bioadhesives and nanotechnology-based biomaterials offer safer, more efficient, and cost-effective medical solutions. Some of the major impacts of his work include:

  • Advancing medical adhesives: His supramolecular bioadhesives are revolutionizing wound management, surgical applications, and tissue engineering.
  • Enhancing regenerative medicine: His contributions to biomineralization-inspired materials support bone repair and dental applications.
  • Influencing young researchers: As a mentor and academic, he is guiding future scientists and engineers in biomedical research.
  • Industry collaborations: His expertise in biomaterials and medical polymers has facilitated cross-disciplinary partnerships with healthcare and biotechnology companies.

🔮 Legacy and Future Contributions

Dr. Xiang Ke continues to push the boundaries of biomedical material science, with exciting future directions in:

  • Smart and responsive biomaterials for real-time monitoring and adaptive healing.
  • Advanced hydrogel-based wound dressings with antibacterial and regenerative properties.
  • Innovative nanomedicine approaches for targeted drug delivery and infection control.
  • Sustainable biomaterials that promote eco-friendly and efficient medical applications.

Publication Top Notes

Author: H., Wang, Hao, X., Ke, Xiang, S., Tang, Shuxian, J., Luo, Jun, J., Li, Jianshu

Journal: Small

Year: 2024

A Janus Adhesive Hydrogel with Integrated Attack and Defense for Bacteria Killing and Antifouling

Author: K., Ren, Kai, X., Ke, Xiang, M., Zhang, Miao, J., Xie, Jing, J., Li, Jianshu

Journal: BME Frontiers

Year: 2024

Natural small biological molecule based supramolecular bioadhesives with innate photothermal antibacterial capability for nonpressing hemostasis and effective wound healing.

Author: Xiang Ke, Shuxian Tang, Hao Wang, Yusong Cai, Zhiyun Dong, Mingjing Li, Jiaojiao Yang, Xinyuan Xu, Jun Luo, Jianshu Li

Journal: Biological and Medical Applications of Materials and Interfaces

Year: 2022