Diya Agrawal | Chemical Engineering | Best Researcher Award

Ms. Diya Agrawal | Chemical Engineering | Best Researcher Award 

Birla Institute of Technology and Science | India

Ms. Diya Agrawal is an exceptional dual-degree student pursuing M.Sc. (Hons.) in Chemistry and B.E. (Hons.) in Chemical Engineering at the Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus (2021–2026), maintaining an outstanding CGPA of 9.4. With a strong interdisciplinary background bridging chemistry, chemical engineering, and data analytics, she exemplifies a new generation of researchers passionate about sustainable chemical technologies, carbon capture, and clean energy innovation. Her academic journey reflects a seamless integration of simulation-based process engineering, experimental chemistry, and techno-economic analysis — skills that have enabled her to contribute to advanced industrial and environmental research. Her technical proficiency encompasses Aspen Plus, Aspen HYSYS, Python, MATLAB, SQL, and visualization tools such as Tableau, Power BI, and Looker Studio. This versatile toolkit allows her to model complex processes, analyze large datasets, and develop digital solutions for chemical engineering systems. Her innovative approach to reactor and absorber design improved energy efficiency and conversion rates while ensuring process feasibility for sustainable fuel synthesis. In another project, she conducted a techno-economic analysis of biogas-to-bio-CNG conversion using Aspen Plus, where she optimized methane yield (>95%) and evaluated scale-up cost implications for industrial deployment. Her research on Novel Adsorbents for Direct Air Capture (DAC) further illustrates her ability to merge materials chemistry with process engineering. She synthesized amide-based Metal–Organic Frameworks (MOFs) that demonstrated a 25% increase in CO₂ adsorption capacity, providing valuable insights into scalable carbon capture solutions. Complementing this experimental work, she also contributed to literature through her review on “Green Hydrogen Production Pathways for a Sustainable Future with Net Zero Emissions” published in Fuel (2023), where she analyzed over 400 studies to highlight advancements and challenges in the hydrogen economy. Her second publication, “Comparative Study of Modified Cu-BTC and ZIF-8 Adsorbents for CO₂ Capture” (Total Environment Engineering, 2025), has been recognized for its contribution to carbon capture research, garnering early citations in sustainability and materials science literature. To date, Ms. Agrawal has 2 peer-reviewed journal publications, accumulating over 35 citations and an h-index of 2, reflecting her growing research influence in the fields of carbon capture and green hydrogen production. Beyond research, Ms. Agrawal has demonstrated exemplary leadership and organizational acumen as the Vice-President of Alchemy, the BITS Chemistry Association, where she led a 25-member team to organize technical fests and academic outreach initiatives. Her excellence has been recognized through the Merit Scholarship (Top 2%) at BITS Pilani Hyderabad in 2025. Ms. Diya Agrawal stands out as a dedicated scholar and an emerging innovator, committed to advancing sustainable chemical processes through an integrated approach combining chemical engineering, environmental science, and data-driven analysis. Her strong research record, academic excellence, and leadership potential position her as a promising contributor to the global transition toward a sustainable and carbon-neutral future.

Profiles: Scopus | Linkedin

Featured Publications

Velagala, S. K. R., Aniruddha, R., Agrawal, D., Sabri, Y. M., Parthasarathy, R., & Sreedhar, I. (2025). Comparative study of modified Cu-BTC and ZIF-8 adsorbents for stable and enhanced direct air capture of CO₂. Total Environment Engineering.

 Agrawal, D., Mahajan, N., Singh, S. A., & Sreedhar, I. (2023). Green hydrogen production pathways for sustainable future with net zero emissions. Fuel.

Ashish Gome | Chemical Engineering | Best Academic Researcher Award | 13632

Dr. Ashish Gome | Chemical Engineering | Best Academic Researcher Award 

Prashanti Group of Institutes |  India 

Dr. Ashish Gome, Associate Professor and Dean (Academics & Administration) at Prashanti Group of Institutes, Ujjain (M.P.), has over 16 years of rich academic and professional experience spanning roles as Head of Department, Dean of External Affairs, and Dean of Academics & Administration. He brings more than six years of industrial experience as an Environmental Consultant, guiding multiple UG and PG student projects. His research focuses on chemical engineering, wastewater treatment, and advanced oxidation processes, particularly the treatment of real pharmaceutical industry wastewater. Dr. Gome has published impactful research in indexed journals, including Springer’s International Journal of Environmental Science and Technology (IJEST), ISCA journals, International Journal of Advances in Research (IJAR), and Pollution Research. His work is highly cited, providing a strong contribution to the understanding of industrial wastewater treatment with practical relevance. According to citation databases, his publications have achieved Substantial citations, and his h-index reflects his growing influence in the field. He serves as an editorial member for the International Journal of Advances in Engineering & Scientific Research. He is a lifetime member of the International Society for Research & Development, highlighting his active engagement in professional communities. Dr. Gome’s research uniquely involves the careful collection and treatment of real wastewater samples from pharmaceutical industries, analyzed under stringent conditions at the MP Pollution Control Board Regional Office. This ensures authenticity and practical applicability of his findings. His studies demonstrate significant potential for pollution load reduction and sustainable industrial practices. While his research collaborations and patents are currently limited, his publications and editorial contributions illustrate a consistent commitment to advancing knowledge. His consultancy experience enriches his academic insight, connecting theoretical work with industrial practice. Dr. Gome’s work has been widely recognized for rigor, precision, and real-world relevance, making him a strong candidate for awards in environmental engineering and chemical process innovation. His mentorship of students ensures knowledge transfer and the cultivation of future researchers. His research outputs align with global sustainability goals and demonstrate notable societal impact. The combination of publications, citations, and h-index underscores his research credibility and thought leadership. He continues to innovate within advanced oxidation processes and wastewater treatment technologies. The practical implications of his studies extend to environmental management and policy implementation.

Profile: Orcid

 

Featured Publications

“Removal of persistent chemical oxygen demand from pharmaceutical wastewater by ozonation at different pH”.

“Simulation study of phenol degradation by Fenton process using ASPEN-Plus”.

“Chemical kinetics of ozonation and other processes used for the treatment of wastewater containing pharmaceuticals: A review”.

“Biodegradability Assessment of Pharmaceutical Wastewater Treated by Ozone”.